『数论』乘法逆元

在求解除法取模问题 (a/b)%m 时,我们可以转化为 (a%(b×m))/b

但是如果 b 很大,则会出现爆精度问题,所以我们避免使用除法直接计算。

可以使用逆元将除法转换为乘法:假设 b 存在乘法逆元,即与 m 互质(充要条件)。

c b 的逆元,即 b×c1(mod m)

那么有 a/b=(a/b)×1=(a/b)×b×c=a×c(mod m)

 

即,除以一个数取模等于乘以这个数的逆元取模

  • 逆元求解一般利用扩欧。

  • m 为质数的时候直接使用费马小定理, m 非质数使用欧拉函数。

  • m 为质数的时候,神奇的线性方法。

 

扩展欧几里得算法

要求 a,m 互素,存在唯一解。

int extgcd(int a, int b, int& x, int& y)
{
    int d = a;
    if(b != 0)
    {
        d = extgcd(b, a % b, y, x);
        y -= (a / b) * x;
    }
    else
    {
        x = 1;
        y = 0;
    }
    return d;
}
int mod_inverse(int a, int m)
{
    int x, y;
    extgcd(a, m, x, y);
    return (m + x % m) % m;
}

 

费马小定理

p 是素数的情况下,对任意整数 x 都有 xpx(mod p)

如果 x 无法被 p 整除,则有 xp11(mod p)

可以在 p 为素数的情况下求出一个数的逆元, x×xp21(mod p) xp2 即为 x 的逆元。

ll mult(ll a,ll n)  //求a^n%mod
{
    ll s=1;
    while(n)
    {
        if(n&1)s=s*a%mod;
        a=a*a%mod;
        n>>=1;
    }
    return s;
} //mult(a,n-2);

 

欧拉函数

ϕ(m) 表示小于等于 m 且与 m 互素的正整数的个数。

如果 x m 互质,则有 xϕ(m)1(mod m) ,即 x×xϕ(m)11(mod m) xϕ(m)1 x 的逆元。

m 为质数的情况下, ϕ(m)=m1 ,即为费马小定理。

 

思路:

求出欧拉函数的值,利用欧拉函数的积性性质

对于任意整数 n ,可以将它分解 n=pk11×pk22×pk33...pkmm ,其中 pi 为质数, ϕ(n)=ϕ(pk11)×ϕ(pk22)...ϕ(pkmm)

最后转化为 ϕ(n)=n×(pi1)/pi

对给定 n 进行整数分解,时间复杂度 O(n)

int eurler_phi(int n)
{
    int res = n;
    for(int i = 2; i * i <= n; i++)
    {
        if(n % i == 0)
        {
            res = res / i * (i - 1);
            while(n % i == 0) n /= i;
        }
    }
    if(n != 1) res = res / n * (n - 1);
    return res;
}

 

埃氏筛法求欧拉函数值的表,每次发现质因子就把他的倍数的欧拉函数乘上 (p1)×p

n 为奇数时,有 ϕ(2n)=ϕ(n)

因为 2n 是偶数,偶数与偶数一定不互素,所以只考虑 2n 与小于它的奇数互素的情况,则恰好就等于 n 的欧拉函数值。

int euler[maxn];
void euler_phi2()
{
    for(int i = 0; i < maxn; i++)  euler[i] = i;
    for(int i = 2; i < maxn; ++i)
    {
        if(euler[i] == i)
        {
            for(int j = i; j < maxn; j += i)
            {
                euler[j] = euler[j] / i * (i - 1);
            }
        }
    }
}

 

线性时间求所有逆元

规定 p 为质数,且 111(mod p)

p=k×a+b,(b<a,1<a<p) ,即 k×a+b0(mod p)

两边同时乘以 a1×b1 ,得到

k×b1+a10(mod p)

a1k×b1(mod p)

a1p/a×(p%a)1(mod p)

从头开始扫一遍即可,时间复杂度 O(n)

int inv[maxn];
inv[1] = 1;
for(int i = 2; i < maxn; i++)
    inv[i] = (p - p / i) % p * inv[p % i];
  • 3
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值