关闭

poj3255

标签: poj算法dijkstra
97人阅读 评论(0) 收藏 举报
分类:

题目:点击打开链接

/*
translation:
	给你一张无向图,并标出每对可达两点之间的距离。要求从1~n的次短路径。
	
solution:
	对dijkstra稍加改进。每当从队列中拿出一个边时,先与最短路径d[e.to]比较,如果比这个短,则更新且
	次短路径d2[e.to]变为原来的d[e.to]值。如果比d[e.to]长,则直接与d2[e.to]比较,并松弛更新。
	最后d2[n-1]就是答案。
	
note:
	1:刚开始的想法是先第一遍求出最短路径,然后第二遍使用dijkstra算法同时在松弛操作中额外添加 “松弛边要大于源点
	到该点最短路径” 这个条件。这是错误的!因为如果源点到该点的边只有一条,那么就没法继续进行松弛操作。(注意
	题目中只说到n的边不止有一条)。
	2:而后改进的方法是这样的,只在松弛到终点的边时额外添加 “松弛边要大于源点到该点最短路径” 这个条件。其余的
	不变,与求最短路径一样。但这任然错误!因为从1->k->n(假设k是从1到n要经过的一个顶点)的最短路有可能是1到k的
	最(次)短路加上k到n的次短路,或者1到k的次短路加上k到n的最(次)短路。而按这种方法是默认1到n的次段路一定
	是1到k的最短路加上k到n的最短路或者次短路。这是不正确的!!
	
date:
	2016.8.29
*/
#include <iostream>
#include <cstdio>
#include <cstring>
#include <queue>
#include <utility>

using namespace std;
const int maxn = 5000 + 1;
const int INF = 1e30;

struct Edge {
	int to, dist;
	Edge(int t, int d) : to(t), dist(d) {}
};
vector<Edge> G[maxn];
int n, r;
int d[maxn], d2[maxn];

typedef pair<int, int> P;

int main()
{
	//freopen("in.txt", "r", stdin);
	while(~scanf("%d%d", &n, &r)) {
		for(int i = 0; i < maxn; i++)	G[i].clear();

		int from, to, dis;
		for(int i = 0; i < r; i++) {
			scanf("%d%d%d", &from, &to, &dis);
			G[from - 1].push_back(Edge(to - 1, dis));
			G[to - 1].push_back(Edge(from - 1, dis));
		}

		fill(d, d + n, INF);
		fill(d2, d2 + n, INF);

		//dijkstra(0);

		priority_queue<P, vector<P>, greater<P> > q;
		d[0] = 0;
		q.push(P(0, 0));
		while(!q.empty()) {
			P p = q.top();	q.pop();
			int v = p.second;
			if(d2[v] < p.first)	continue;
			for(int i = 0; i < G[v].size(); i++) {
				Edge &e = G[v][i];
				int tmp = p.first + e.dist;
				if(d[e.to] > tmp) {
					swap(d[e.to], tmp);
					q.push(P(d[e.to], e.to));
				}
				if(d2[e.to] > tmp && tmp > d[e.to]) {	//比最短的长,又比现有次短的短,则更新次短。
					d2[e.to] = tmp;
					q.push(P(d2[e.to], e.to));
				}
			}
		}

		printf("%d\n", d2[n - 1]);
	}
    return 0;
}


0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:39745次
    • 积分:2950
    • 等级:
    • 排名:第12695名
    • 原创:268篇
    • 转载:0篇
    • 译文:0篇
    • 评论:5条
    最新评论