关闭

poj3169(差分约束系统)

104人阅读 评论(0) 收藏 举报
分类:

题目:点击打开链接

/*
translation:
	n头牛要进食,每两头关系良好的牛要求距离不超过d1,每两头相互讨厌的牛要求距离不小于d2。
	牛从左往右编号1...n。现在给出ml对关系良好的牛以及它们的最大距离,md对相互讨厌的牛以及
	它们的最小距离,求1号牛到n号牛的最大距离。

solution:
	差分约束系统,bellman_ford最短路
	设d[i]表示第i头牛的坐标在d[i]处,则对于关系良好的牛有:d[b] <= d[a]+d1;相互讨厌的
	牛有:d[b] - d >= d[a]。根据于此就可建立差分约束系统来求最短路径。

note:
	1:关于差分约束系统。
	首先要清楚在最短路当中的一个性质:记d[v]表示点v到源点的最短距离,对于每条边{from, to, w}
	有d[from] + w >= d[to]。根据这个性质就可以类比该题。对于d[b] <= d[a]+d1这个关系,
	相当与从a到b连接一条权值为d1的边,对于d[b] - d >= d[a],可以理解为从b到a连接一条权值-a
	的边。然后求最短路,注意,是最短路!!题目要求1号牛到n号牛的最大距离是在求最短路!!
	2:bellman_ford算法的板子错了!调了好久才发现!!注意改模板!有时候即使题目AC了也不能保证
	这个模板正确!!

date:
	2016.8.30
*/
#include <iostream>
#include <cstdio>
#include <vector>
#include <utility>
#include <cstring>

using namespace std;
const int maxn = 1001;
const int INF = 1e30;

struct Edge {
	int s, e, w;
	Edge(int f_, int t_, int c_) : s(f_), e(t_), w(c_) {}
};
vector<Edge> edges;
int n, ml, md;	//牛的个数,良好关系数量,厌恶关系数量
int dist[maxn];	//从起点到该点的最小距离

int bellman_ford(int v) {
	for( int i = 1; i <= n; ++i)
		dist[i] = INF;

	dist[v] = 0;
	for( int k = 1; k < n; ++k) { //经过不超过k条边
		for( int i = 0;i < edges.size(); ++i) {
			int s = edges[i].s;
			int e = edges[i].e;
			if(dist[s] < INF && dist[s] + edges[i].w < dist[e])	dist[e] = dist[s] + edges[i].w;
		}
	}

	for( int i = 0;i < edges.size(); ++ i) {
		int s = edges[i].s;
		int e = edges[i].e;
		if(dist[s] < INF && dist[s] + edges[i].w < dist[e])	return true;
		//判断有无负圈,如果有返回真,否则返回假。
	}
	return false;
}

int main()
{
	//freopen("in.txt", "r", stdin);
	while(cin >> n >> ml >> md) {
		edges.clear();
		int a, b, val;
		for(int i = 0; i < ml; i++) {
			cin >> a >> b >> val;
			edges.push_back(Edge(a, b, val));
		}
		for(int i = 0; i < md; i++) {
			cin >> a >> b >> val;
			edges.push_back(Edge(b, a, -val));
		}


		if(!bellman_ford(1)) {	//如果无负环
			if(dist[n] >= INF)	cout << "-2\n";
			else				cout << dist[n] << endl;
		}
		else	cout << "-1\n";	//如果有负环,说明肯定没有符合要求的解法
	}
    return 0;
}




0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:39669次
    • 积分:2948
    • 等级:
    • 排名:第12600名
    • 原创:268篇
    • 转载:0篇
    • 译文:0篇
    • 评论:5条
    最新评论