poj3169(差分约束系统)

原创 2016年08月30日 17:46:40

题目:点击打开链接

/*
translation:
	n头牛要进食,每两头关系良好的牛要求距离不超过d1,每两头相互讨厌的牛要求距离不小于d2。
	牛从左往右编号1...n。现在给出ml对关系良好的牛以及它们的最大距离,md对相互讨厌的牛以及
	它们的最小距离,求1号牛到n号牛的最大距离。

solution:
	差分约束系统,bellman_ford最短路
	设d[i]表示第i头牛的坐标在d[i]处,则对于关系良好的牛有:d[b] <= d[a]+d1;相互讨厌的
	牛有:d[b] - d >= d[a]。根据于此就可建立差分约束系统来求最短路径。

note:
	1:关于差分约束系统。
	首先要清楚在最短路当中的一个性质:记d[v]表示点v到源点的最短距离,对于每条边{from, to, w}
	有d[from] + w >= d[to]。根据这个性质就可以类比该题。对于d[b] <= d[a]+d1这个关系,
	相当与从a到b连接一条权值为d1的边,对于d[b] - d >= d[a],可以理解为从b到a连接一条权值-a
	的边。然后求最短路,注意,是最短路!!题目要求1号牛到n号牛的最大距离是在求最短路!!
	2:bellman_ford算法的板子错了!调了好久才发现!!注意改模板!有时候即使题目AC了也不能保证
	这个模板正确!!

date:
	2016.8.30
*/
#include <iostream>
#include <cstdio>
#include <vector>
#include <utility>
#include <cstring>

using namespace std;
const int maxn = 1001;
const int INF = 1e30;

struct Edge {
	int s, e, w;
	Edge(int f_, int t_, int c_) : s(f_), e(t_), w(c_) {}
};
vector<Edge> edges;
int n, ml, md;	//牛的个数,良好关系数量,厌恶关系数量
int dist[maxn];	//从起点到该点的最小距离

int bellman_ford(int v) {
	for( int i = 1; i <= n; ++i)
		dist[i] = INF;

	dist[v] = 0;
	for( int k = 1; k < n; ++k) { //经过不超过k条边
		for( int i = 0;i < edges.size(); ++i) {
			int s = edges[i].s;
			int e = edges[i].e;
			if(dist[s] < INF && dist[s] + edges[i].w < dist[e])	dist[e] = dist[s] + edges[i].w;
		}
	}

	for( int i = 0;i < edges.size(); ++ i) {
		int s = edges[i].s;
		int e = edges[i].e;
		if(dist[s] < INF && dist[s] + edges[i].w < dist[e])	return true;
		//判断有无负圈,如果有返回真,否则返回假。
	}
	return false;
}

int main()
{
	//freopen("in.txt", "r", stdin);
	while(cin >> n >> ml >> md) {
		edges.clear();
		int a, b, val;
		for(int i = 0; i < ml; i++) {
			cin >> a >> b >> val;
			edges.push_back(Edge(a, b, val));
		}
		for(int i = 0; i < md; i++) {
			cin >> a >> b >> val;
			edges.push_back(Edge(b, a, -val));
		}


		if(!bellman_ford(1)) {	//如果无负环
			if(dist[n] >= INF)	cout << "-2\n";
			else				cout << dist[n] << endl;
		}
		else	cout << "-1\n";	//如果有负环,说明肯定没有符合要求的解法
	}
    return 0;
}




版权声明:本文为博主原创文章,未经博主允许不得转载。

POJ 3169-Layout(差分约束系统)

题目地址:POJ 3169 题意:N头牛排队吃饭 排编号顺序排,大的永远在小的前面,但牛之间有的关系好,有的差,所以有的牛想离某些牛的距离最远不超过D 有的必须大于D 给出它们的关系 求第n头牛跟第...

POJ3169 Layout——差分约束系统+SPFA

本题是一道典型的差分约束系统问题。关于差分约束系统,请visit 百度百科:http://baike.baidu.com/view/1008149.htm 简略成一句话,那就是:对于i-j 对于本...

POJ 3169 Layout 差分约束系统

/** * @file main.cpp * @brief 差分约束系统,题意很简单 * 一堆的奶牛,有的两两希望距离x以上,有的希望距离x以下 * 求1到n号奶牛...
  • ker1030
  • ker1030
  • 2013年06月07日 23:14
  • 255

poj3169 差分约束系统

如题:http://poj.org/problem?id=3169   Layout Time Limit: 1000MS   Memory Limit: 65536K ...

POJ3169_Layout_spfa && 最短路思想 求 差分约束系统

Layout Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 11246   Accept...
  • yuege38
  • yuege38
  • 2017年04月24日 21:50
  • 193

POJ3169 Layout 【差分约束系统】

Layout Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7468   Accepte...

POJ 3169 Layout (差分约束系统)

题目地址:POJ 3169 很简单的差分约束。。公式很明显。当输入最大值的时候,是a-b=c。然后根据这个式子用最短路求。 代码如下: #include #include #include ...

POJ3169 Layout 差分约束系统[三星]

题目链接:POJ CodeVs 由于是英文题目就不再复制题面了~昨天看CV月赛的题看到这个题,因为Std有个地方看不懂所以自己再做了一下。首先本题仔细读题后发现求最大值,于是就跑最短路: 然后再...

POJ 3169 差分约束系统 + spfa

具体讲解看链接,证明的很清楚,神奇的差分约束系统将不等式和图论中的最短路联系起来,数形结合应用的妙不可言。 http://blog.csdn.net/zhang20072844/article/de...

POJ_3169 Layout(差分约束系统-最短路)

题意: 一群牛按照编号排列,但是个别之间有限制。有的不能挨得太近,有的不能离得太远。问第1头牛和第N头之间最远是多少? 思路: 最开始想着是贪心,但是发现不好贪,牛是按照序号排列的,但是关系却很...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:poj3169(差分约束系统)
举报原因:
原因补充:

(最多只允许输入30个字)