关闭

HDU2509 Be the Winner Nim博弈

标签: HDU博弈论
82人阅读 评论(0) 收藏 举报
分类:
题目链接:HDU2509

Be the Winner

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 3246    Accepted Submission(s): 1814


Problem Description
Let's consider m apples divided into n groups. Each group contains no more than 100 apples, arranged in a line. You can take any number of consecutive apples at one time.
For example "@@@" can be turned into "@@" or "@" or "@ @"(two piles). two people get apples one after another and the one who takes the last is 
the loser. Fra wants to know in which situations he can win by playing strategies (that is, no matter what action the rival takes, fra will win).
 

Input
You will be given several cases. Each test case begins with a single number n (1 <= n <= 100), followed by a line with n numbers, the number of apples in each pile. There is a blank line between cases.
 

Output
If a winning strategies can be found, print a single line with "Yes", otherwise print "No".
 

Sample Input
2 2 2 1 3
 

Sample Output
No Yes
 

题意:有几堆苹果,每堆都放成一列,一次可以在一堆中取连续的几个,最后取完的为负,问是否有必胜的算法。
题目分析:这题有取完后拆成2堆的情况,看似复杂了,其实和HDU1907是一回事,考虑S2,S1,S0与T2,T0态相互转换的过程,发现多分出堆的情况只存在于有充裕堆的情况而此时不会影响到S2到T2,S1到T0的互相转化,也就是说多分出堆对游戏结果没有任何影响,沿用上题结论即可。
//
//  main.cpp
//  HDU2509
//
//  Created by teddywang on 2016/8/29.
//  Copyright © 2016年 teddywang. All rights reserved.
//

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int T,m,n;
int main()
{
    while(cin>>n)
    {
        int c[200];
        int ans=0,flag=0;
        for(int i=0;i<n;i++)
        {
            cin>>c[i];
            ans^=c[i];
            if(c[i]>1) flag++;
        }
        if((ans&&flag>=1)||(ans==0&&flag==0)) cout<<"Yes"<<endl;
        else cout<<"No"<<endl;
    }
}


0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:23090次
    • 积分:1681
    • 等级:
    • 排名:千里之外
    • 原创:148篇
    • 转载:1篇
    • 译文:0篇
    • 评论:0条