关闭

HDU2509 Be the Winner Nim博弈

标签: HDU博弈论
147人阅读 评论(0) 收藏 举报
分类:
题目链接:HDU2509

Be the Winner

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 3246    Accepted Submission(s): 1814


Problem Description
Let's consider m apples divided into n groups. Each group contains no more than 100 apples, arranged in a line. You can take any number of consecutive apples at one time.
For example "@@@" can be turned into "@@" or "@" or "@ @"(two piles). two people get apples one after another and the one who takes the last is 
the loser. Fra wants to know in which situations he can win by playing strategies (that is, no matter what action the rival takes, fra will win).
 

Input
You will be given several cases. Each test case begins with a single number n (1 <= n <= 100), followed by a line with n numbers, the number of apples in each pile. There is a blank line between cases.
 

Output
If a winning strategies can be found, print a single line with "Yes", otherwise print "No".
 

Sample Input
2 2 2 1 3
 

Sample Output
No Yes
 

题意:有几堆苹果,每堆都放成一列,一次可以在一堆中取连续的几个,最后取完的为负,问是否有必胜的算法。
题目分析:这题有取完后拆成2堆的情况,看似复杂了,其实和HDU1907是一回事,考虑S2,S1,S0与T2,T0态相互转换的过程,发现多分出堆的情况只存在于有充裕堆的情况而此时不会影响到S2到T2,S1到T0的互相转化,也就是说多分出堆对游戏结果没有任何影响,沿用上题结论即可。
//
//  main.cpp
//  HDU2509
//
//  Created by teddywang on 2016/8/29.
//  Copyright © 2016年 teddywang. All rights reserved.
//

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int T,m,n;
int main()
{
    while(cin>>n)
    {
        int c[200];
        int ans=0,flag=0;
        for(int i=0;i<n;i++)
        {
            cin>>c[i];
            ans^=c[i];
            if(c[i]>1) flag++;
        }
        if((ans&&flag>=1)||(ans==0&&flag==0)) cout<<"Yes"<<endl;
        else cout<<"No"<<endl;
    }
}


0
0
查看评论

Be the Winner( HDU2509)Nim博弈

Problem Description Let's consider m apples divided into n groups. Each group contains no more than 100 apples, arranged in a line. You can take a...
  • islittlehappy
  • islittlehappy
  • 2017-12-26 21:06
  • 41

HDU2509:Be the Winner(Nim)

Problem Description Let's consider m apples divided into n groups. Each group contains no more than 100 apples, arranged in a line. You can take ...
  • libin56842
  • libin56842
  • 2013-12-16 20:41
  • 2213

HDU2509 Be the Winner 博弈

/*和1907几乎完全一样,不解释*/ #include using namespace std; int value[101]; int main () { int n,sum,temp, i, cnt; while (cin>>n) ...
  • mishifangxiangdefeng
  • mishifangxiangdefeng
  • 2012-01-10 10:30
  • 1309

博弈之Nim浅谈

博弈论应该算是一门独立的学问吧,它是现代数学不断进步的产物,是运筹学中重要的一部分。作为一个计算机科学与技术专业的学生,在这里谈论这高深的“博弈”二字实有不妥,所以,讲的不好的地方请多见谅。 Nim的游戏规则(问题描述):有N堆物品,每堆有M[i](1 定理(亦是结论):如果M[1] xor ...
  • Yick_Liao
  • Yick_Liao
  • 2015-12-18 15:23
  • 1074

博弈-Nim博弈

Nim博弈
  • wximo
  • wximo
  • 2014-05-13 11:19
  • 813

hihocoder 1172 博弈游戏·Nim游戏·二

这道题是Nim博弈的变形。网上没有找到相关的题解,估计大部分人都没有看hihocoder里边所给出的提示,提示已经很清楚明确的把这道题变为Nim博弈问题了。 首先我们来分析一下这道题,首先我们不妨设所有硬币都背面朝上的局面为局面0,然后我们设第一枚硬币正面朝上的局面为局面1,我们很容易就可以想到,局...
  • wangcong9614
  • wangcong9614
  • 2015-07-25 15:46
  • 375

[HDU2509]Be the Winner(博弈Anti-SG+Multi-SG游戏)

题目描述传送门题解就是一个Anti-SG和Multi-SG游戏的结合。 求出SG函数了之后用结论就可以了。 不过这道题是可以证明堆的大小为i的堆sg=i 用归纳法,首先sg(0)=0显然。 假设对于0-n-1sg(i)=i都成立,证明sg(n)=n 可以看出求n的sg函数实际上就是将所有相...
  • Clove_unique
  • Clove_unique
  • 2016-12-23 08:56
  • 208

Misere Nim (Nim博弈)

Misere Nim (Nim博弈):http://acm.hust.edu.cn/vjudge/contest/view.action?cid=112620#problem/B 传送门:nefu 题面描述: Time Limit:1000MS   &...
  • PNAN222
  • PNAN222
  • 2016-04-14 09:24
  • 608

hdu2509 Be the Winner

Be the Winner Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 1543 ...
  • u010422038
  • u010422038
  • 2013-09-24 16:52
  • 933

Nim博弈及其扩展

1.定义 有若干堆石子,每堆石子的数量都是有限的,合法的移动是“选择一堆石子并拿走若干颗(不能不拿)”,如果轮到某个人时所有的石子堆都已经被拿空了,则判负。 2.局面 给出如下定义: P-Position:Previous-player 刚刚走过的选手得胜的局势; N-Position: Next-...
  • ww32zz
  • ww32zz
  • 2015-09-21 17:10
  • 434
    个人资料
    • 访问:36754次
    • 积分:1937
    • 等级:
    • 排名:千里之外
    • 原创:165篇
    • 转载:1篇
    • 译文:0篇
    • 评论:0条