关闭

HDU1536&&HDU1944 S-Nim SG函数

标签: HDU博弈论
104人阅读 评论(0) 收藏 举报
分类:

题目链接:HDU1536

S-Nim

Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 7162    Accepted Submission(s): 3026


Problem Description
Arthur and his sister Caroll have been playing a game called Nim for some time now. Nim is played as follows:


  The starting position has a number of heaps, all containing some, not necessarily equal, number of beads.

  The players take turns chosing a heap and removing a positive number of beads from it.

  The first player not able to make a move, loses.


Arthur and Caroll really enjoyed playing this simple game until they recently learned an easy way to always be able to find the best move:


  Xor the number of beads in the heaps in the current position (i.e. if we have 2, 4 and 7 the xor-sum will be 1 as 2 xor 4 xor 7 = 1).

  If the xor-sum is 0, too bad, you will lose.

  Otherwise, move such that the xor-sum becomes 0. This is always possible.


It is quite easy to convince oneself that this works. Consider these facts:

  The player that takes the last bead wins.

  After the winning player's last move the xor-sum will be 0.

  The xor-sum will change after every move.


Which means that if you make sure that the xor-sum always is 0 when you have made your move, your opponent will never be able to win, and, thus, you will win. 

Understandibly it is no fun to play a game when both players know how to play perfectly (ignorance is bliss). Fourtunately, Arthur and Caroll soon came up with a similar game, S-Nim, that seemed to solve this problem. Each player is now only allowed to remove a number of beads in some predefined set S, e.g. if we have S =(2, 5) each player is only allowed to remove 2 or 5 beads. Now it is not always possible to make the xor-sum 0 and, thus, the strategy above is useless. Or is it? 

your job is to write a program that determines if a position of S-Nim is a losing or a winning position. A position is a winning position if there is at least one move to a losing position. A position is a losing position if there are no moves to a losing position. This means, as expected, that a position with no legal moves is a losing position.
 

Input
Input consists of a number of test cases. For each test case: The first line contains a number k (0 < k ≤ 100 describing the size of S, followed by k numbers si (0 < si ≤ 10000) describing S. The second line contains a number m (0 < m ≤ 100) describing the number of positions to evaluate. The next m lines each contain a number l (0 < l ≤ 100) describing the number of heaps and l numbers hi (0 ≤ hi ≤ 10000) describing the number of beads in the heaps. The last test case is followed by a 0 on a line of its own.
 

Output
For each position: If the described position is a winning position print a 'W'.If the described position is a losing position print an 'L'. Print a newline after each test case.
 

Sample Input
2 2 5 3 2 5 12 3 2 4 7 4 2 3 7 12 5 1 2 3 4 5 3 2 5 12 3 2 4 7 4 2 3 7 12 0
 

Sample Output
LWW WWL
 
题意:有几堆,每堆有几个珠子,每次只能在一堆中拿特定数量的珠子,问是否有必胜的算法。
题目分析:考察sg函数的题目,每个大游戏是所有子游戏的sg值的异或和,异或和为0就代表必输,反之必胜。子游戏的sg函数就是枚举所有后继情况再求mex。
//
//  main.cpp
//  HDU1536
//
//  Created by teddywang on 2016/8/30.
//  Copyright © 2016年 teddywang. All rights reserved.
//

#include <iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int s[101],m,n,sg[11000];

int mex(int b)
{
    if(sg[b]!=-1) return sg[b];
    int vis[110];
    memset(vis,0,sizeof(vis));
    for(int i=0;i<m;i++)
    {
        if(b>=s[i])
        {
            sg[b-s[i]]=mex(b-s[i]);
            vis[sg[b-s[i]]]=1;
        }
        else break;
    }
    int i=0;
    while(1)
    {
        if(!vis[i]) return i;
        else i++;
    }
}

int main()
{
    while(scanf("%d",&m)&&m)
    {
        memset(s,0,sizeof(s));
        for(int i=0;i<m;i++)
        {
            scanf("%d",&s[i]);
        }
        sort(s,s+m);
        memset(sg,-1,sizeof(sg));
        sg[0]=0;
        scanf("%d",&n);
        for(int i=0;i<n;i++)
        {
            int l,ans=0,buf;
            scanf("%d",&l);
            for(int j=0;j<l;j++)
            {
                scanf("%d",&buf);
                sg[buf]=mex(buf);
                ans^=sg[buf];
            }
            if(ans==0) cout<<"L";
            else cout<<"W";
        }
        cout<<endl;
    }
}



0
0
查看评论
发表评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场

poj2960——S-Nim(SG函数)

DescriptionArthur and his sister Caroll have been playing a game called Nim for some time now. Nim is played as follows: The starting position has a ...
  • blue_skyrim
  • blue_skyrim
  • 2016-05-11 21:15
  • 576

POJ2960 S-Nim(博弈论:sg函数)

题意: 给出一系列石子堆,现在每次只能从一个堆中拿出固定石子数,问输赢结果。 要点: 跟Nim博弈很像,但是这次每次只能拿固定个数,所以要用sg函数,下面是sg函数的具体定义: sg(x) = mex ( sg(y) |y是x的后继结点 ) 其中mex(x)(x是一个自然是集合)函数是x关于自然数...
  • SeasonJoe
  • SeasonJoe
  • 2016-09-26 21:08
  • 184

S-Nim + sg函数+博弈+模板

S-Nim Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 2898  &...
  • wenlovingliu
  • wenlovingliu
  • 2013-05-22 14:28
  • 347

博弈论 SG函数

别被文章长度吓到,学会博弈(SG)只用看前1/10。 鉴于讲明白博弈要写好多字,于是找了些论文拼凑,对疑难点加了注释并配上“美图”助解。 Nim游戏 重点结论:对于一个Nim游戏的局面(a1,a2,...,an),它是P-position当且仅当a1^a2^...^an=0,其中^表示位异或(xor...
  • strangedbly
  • strangedbly
  • 2016-04-12 21:36
  • 7030

SG函数的详细解释

SG函数可以说是博弈论中很重要的运用,有了SG函数就可以解决很多很难解决的博弈问题,也是解决例如nim博弈和翻硬币博弈的一些基础。 入门一: 首先来玩个游戏,引用杭电课件上的: (1) 玩家:2人;      (2) 道具:2...
  • beyhhhh
  • beyhhhh
  • 2015-07-14 20:38
  • 525

博弈论 SG函数从懵逼到入门 SG模板 hdu1848

 摘自piaocoder的博客: 首先定义mex(minimal excludant)运算,这是施加于一个集合的运算,表示最小的不属于这个集合的非负整数。例如 mex{0,1,2,4}=3、mex{2,3,5}=0、mex{}=0。 对于一个给定的有向无环图,定义关于图的每个顶点...
  • yizhangbiao
  • yizhangbiao
  • 2016-07-22 10:03
  • 1301

组合游戏 - SG函数和SG定理

组合游戏的和通常是很复杂的,所以我们介绍一种新工具,可以使组合问题变得简单————SG函数和SG定理。 Sprague-Grundy定理(SG定理):         游戏和的SG函数等于各个游戏SG函数的Nim和。这样就可以将每...
  • luomingjun12315
  • luomingjun12315
  • 2015-05-07 08:09
  • 7870

hdu1536 S-Nim (利用sg函数模板打表)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1536 利用sg模板可以做出来,代码如下,但很可能超时: #include #include #include #include #include #define H 10001 #defi...
  • qsort_
  • qsort_
  • 2016-08-03 16:59
  • 278

hdu S-Nim (sg 函数模板题)

S-Nim Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 8528  &...
  • yjt9299
  • yjt9299
  • 2017-11-22 20:58
  • 59

POJ 2960 S-Nim 博弈论,SG函数

Total Submissions: 4284Accepted: 2254 Description Arthur and his sister Caroll have been playing a game called Nim for some time now. Nim is played ...
  • just_sort
  • just_sort
  • 2017-03-02 14:09
  • 447
    个人资料
    • 访问:31641次
    • 积分:1887
    • 等级:
    • 排名:千里之外
    • 原创:165篇
    • 转载:1篇
    • 译文:0篇
    • 评论:0条