【第22期】观点:IT 行业加班,到底有没有价值?

简单堆的创建和操作

原创 2016年05月31日 09:07:55

          回顾前面的知识,我们学了二叉树,而二叉树有很多种存储方式,比如一维数组存储,

链表存储,在刚刚学习建立二叉树的时候,我们用的是链表存储的方式,也就是利用结构体定义一个二

叉树节点,然后将这些节点连接起来。现在为了更好地存储二叉树,我们学习了堆,即将二叉树存储在

一个一维数组里面,由于按照不同的存储顺序,可以将一个堆分为最大堆和最小堆。


最大堆:每个父节点必须大于左右孩子,而每个孩子所代表的子树也是最大堆


最小堆:每个父节点必须小于左右孩子,而每个孩子所代表的子树也是最小堆


那么如何将一个堆变成一个最大堆或者最小堆呢,就是通过向下调整法或者向上调整法,下面会做详细的说明。

首先我们来举一个栗子,给出如下一棵二叉树:


wKiom1cz8uXTjLLRAAAg8X0_uJI833.png

spacer.gif

首先我们需要一个数组将这个二叉树存储起来,因为vector的操作与顺序表相似,为了简便,我们调用

库里的vector来存储二叉树,只不过存储类型为模板类T,此时我们默认建最大堆,所以要提供过向下调

整法来调整,为了使每棵子树都是父节点最大,我们先从最后一个节点找起,然后找到该节点的父节

点,比较父节点和两个子节点的大小,若左右节点有一个比父节点大,则和父节点交换值,然后依次

往前比较,直到整个堆调整为最大堆。

代码如下:

#pragma once
#include<assert.h>
#include<vector>

using namespace std;

template<class T>
class Heap
{
public:
	Heap()
	{}
	//建堆
	Heap(const T* a,size_t size)
	{
		for (size_t i = 0; i < size; i++)//将数组中的数据放到堆里去
		{
			_a.push_back(a[i]);
		}

		for (int j = (_a.size() - 2) / 2; j >= 0; j--)  //第一个非叶子结点的父亲开始
		{
			AdjustDown(j);
		}
	}
	
protected:
	void AdjustDown(size_t parent)
	{
		int child = parent * 2 + 1;; //找到左孩子

 		while (child< _a.size())
		{
			if ((child + 1 < _a.size())&&_a[child] < _a[child + 1] )  //找到左右孩子较大的一个
			{
				++child;
			}

			if (_a[child] > _a[parent])   //如果孩子比父亲大,交换孩子和父亲的值
			{
				swap(_a[child], _a[parent]);
				parent = child;
				child = parent * 2 + 1;
			}
			else
			{
				break;
			}
		}
	}
protected:
	vector<T> _a;
};


通过调整整个堆变为最大堆,调整后的二叉树如下所示


wKioL1cz-BOxm6-WAAAgrg5NnEk711.png



那么建立好堆之后,在对数据进行操作的时候对堆也有一定的影响,所以下面我们来简单写一下堆的pop和push。

push:可以直接调用vector的push_back(),然后再通过向上调整法调整变成最大堆

pop:由于vector没有从堆前面直接pop的,所以要将堆的第一个元素与最后一个元素调换位置,再通过pop_back()pop出去,再通过调整变成最大堆。

具体代码如下:

void push(const T& x)
	{
		_a.push_back(x);

		AdjustUp(_a.size() - 1);
	}
	void pop()
	{
		assert(!_a.empty());

		swap(_a[0], _a[_a.size() - 1]);  //由于没有头删函数,将第一个数据和最后一个交换,再尾删
		_a.pop_back();

		for (int j = (_a.size() - 2) / 2; j >= 0; j--)  //调整为最大堆
		{
			AdjustDown(j);
		}
	}


protected:
	void AdjustDown(size_t parent)
	{
		int child = parent * 2 + 1;; //找到左孩子

 		while (child< _a.size())
		{
			if ((child + 1 < _a.size())&&_a[child] < _a[child + 1] )  //找到左右孩子较大的一个
			{
				++child;
			}

			if (_a[child] > _a[parent])   //如果孩子比父亲大,交换孩子和父亲的值
			{
				swap(_a[child], _a[parent]);
				parent = child;
				child = parent * 2 + 1;
			}
			else
			{
				break;
			}
		}
	}

	void AdjustUp(size_t child)
	{
		int parent = (child - 1) / 2;

		while (child>0)
		{
			if (_a[child]>_a[parent])
			{
				swap(_a[child], _a[parent]);
				child = parent;
				parent = (child - 1) / 2;
			}
			else
			{
				break;
			}
		}
	}



以上便是堆的建立以及简单的操作,小伙伴们看明白了么?

下面给出测试代码:

#include"Heap.h"


void test()
{
	int array[10] = { 7, 14, 12, 15, 10, 11, 13, 16, 9, 8 };
	Heap<int> hp1(array, 10);
	hp1.push(17);
	hp1.pop();   
}

int main()
{
	test();
	return 0;
}

由于这里只给出了具体方法,类的成员没有给完全,小伙伴们可以下去自行补全哦,重要的是方法,可能我给出的方法也有一定的不足之处,还希望大家指出共同进步! 





本文出自 “福大馨” 博客,转载请与作者联系!

版权声明:本文为博主原创文章,未经博主允许不得转载。 举报

相关文章推荐

创建Hibernate简单的添加 删除操作

创建Hibernate 2009年09月03日 星期四 10:37 进入hibernate视图新建数据库 选oracle(thin driver) Connnection ...

通过动态代理(Proxy)实现的数据库连接池的创建连接与归还链接的操作的简单的实现流程

package tk.dong.connection.util; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.lang.reflect.Invocat...

程序员升职加薪指南!还缺一个“证”!

CSDN出品,立即查看!

手工创建datagrid数据列/模板列/按钮事件+简单的数据操作类(asp.net)

1)创建datagrid数据列/模板列/按钮的操作类:using System; using System.Collections; using System.ComponentModel; usin...

hibernate 简单创建与操作(图文)

所使用软件MyEclipse和MYSQL 首先创建数据库和两张表,打开myeclipse创建连接DB Browser 在窗口的右边空白处右击 New… 弹出窗口 <img src="http://dl.iteye.com/upload/picture/pic/64463/77d...

javaIO读和写和创建文件夹的基础简单操作

package com.zuoye16; import java.io.File; import java.io.FileNotFoundException; import java.io.File...
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)