【第22期】观点:IT 行业加班,到底有没有价值?

堆的简单应用

原创 2016年05月31日 09:08:01

一、大数据的处理

给出N个数据,要求找到并输出这N个数里面最大的K个数

思路:利用堆,先建一个开辟一个大小为K的数组,从N个数据里拿出K个数据放到堆里面,然后再通过向

下调整法把堆调整为最小堆,此时数组的第一个元素就是堆里面最小的元素,然后在剩下的N-K个


数据中依次和堆里面最小的数据进行比较,若比第一个元素大,则交换两个的值,每交换一次就向下调

整一次,保证在最上面的是最小元素,这样一直到所有数据比较完毕,此时堆里面存储的k个数据就是最

大的k个数据。


下面是实现代码

#include<iostream>
#include<algorithm>


using namespace std;
//1.在N个数据当中找出最大的K个数

const int N = 10000;
const int K = 100;

void AdjustDown1(int a[], int size, int parent)  //建一个小堆
{
	int child = parent * 2 + 1;

	while (child < K)
	{
		if ((child + 1 < K) && (a[child + 1] < a[child]))
		{
			child++;
		}

		if (a[child] < a[parent])
		{
			swap(a[child], a[parent]);
			parent = child;
			child = parent * 2 + 1;
		}
		else
		{
			break;
		}
	}



}


void GetTopK(int a[],int TopK[])
{
	assert(K < N);
	int i = 0;
	int j = 0;
	int m = 0;
	int n = 0;

	for (i = 0; i < K; i++)
	{
		TopK[i] = a[i];     //取出a中的前k个数字放到topk[]里面
	}

	//建堆

	for (j = (K - 2) / 2; j >0; --j)
	{
		AdjustDown1(TopK,K,j);
	}

	for (int m = 0; m < N; ++m)
	{
		if (a[m]>TopK[0])
		{
			TopK[0] = a[m];
			AdjustDown1(TopK, K, 0);
		}
	}


	for (int n = 0; n < K; ++n)  //一次输出K个最大数
	{
		cout << TopK[n] << " ";
	}
	cout << endl;
}

测试代码

#include"BIgData.h"



void TestTopK()
{
	int a[N];
	int TopK[K];

	for (int i = 0; i < N; ++i)
	{
		a[i] = i;
	}

	GetTopK(a, TopK);


}
int main()
{
	TestTopK();
	system("pause");
	return 0;
}

测试结果

wKioL1c1OjPxzfEQAAAlIXQHLTo680.png

为了便于调试,我用的测试栗子比较简单,大家可以尝试一下更一般的栗子哦~

二.堆排序

思路:利用堆,建一个最大堆,每次选出最大的数据与数组末尾的数据进行交换,然后再进行一次向下

调整变成最大堆,始终保持最上面的为当前最大的数据,假设数组由n个数据,则下次就让第一个数据与

数组的第n-1个数据作比较,因为第n个数据已经是最大的了,每交换一次要调整一次,这样当比较到第

一个数据时这个堆就是一个有序的了。

实现代码如下:

//2.堆排序:建大堆,每次找到最大的数据交换到数组末尾,将剩下的数据AdjustDown,再进行交换
void AdjustDown2(int a[],int size,size_t parent)
{
	int child = parent * 2 + 1;

	while (child<size)
	{
		if ((child + 1 < size)&&a[child] < a[child + 1])
		{
			++child;
		}

		if (a[child] > a[parent])   
		{
			swap(a[child], a[parent]);
			parent = child;
			child = parent * 2 + 1;
		}
		else
		{
			break;
		}
	}
}

void Heap_Sort(int a[], size_t n)
{
	for (int i = (n - 2) / 2; i >= 0; i--)  //注意边界条件
	{
		AdjustDown2(a, n, i);
	}

	for (int i = 0; i < n; ++i)
	{
		swap(a[0], a[n - 1-i]);

		AdjustDown2(a, n - 1 - i, 0);
	}

	for (int i = 0; i < n; ++i)
	{
		cout << a[i] << " ";
	}
	cout << endl;

}


测试代码:

void TestHeap_Sort()
{
	int a[] = { 10, 12, 9, 15, 13, 17, 16, 18, 20,14 };
	Heap_Sort(a, 10);
}


int main()
{
	TestHeap_Sort();
	system("pause");
	return 0;
}


测试结果:

wKioL1c1POfgzvCsAAAIDBLIr0E804.png


以上便是堆的两种简单应用啦,不足之处还请大家指出哦~








版权声明:本文为博主原创文章,未经博主允许不得转载。 举报

相关文章推荐

堆的一些简单应用

查找数据10000个数中找出最大的前100个数创建一个100个数的小堆,最上面的数是这100个数中最小的;然后依次遍历(从101到10000),如果比它大,替换它。代码实现如下:https://git...

DB2数据库的简单介绍和用法,编程序技巧

DB2是IBM一种分布式数据库解决方案。说简单点:DB2就是IBM开发的一种大型关系型数据库平台.它支持多用户或应用程序在同一条SQL 语句中查询不同database甚至不同DBMS中的数据。目前,DB2有如下一些版本:(比如DB2 for Unix,DB2 for Windows,DB2 for AS/400,DB2 for OS/390等)   DB2是IBM公司开发的关系数据库管理系统,它有多种不同的版本,如:DB2工作组版(DB2Workgroup Edition)、DB2企业版(DB2 Enterprise Edition)、DB2个人版(DB2 Personal Edition
  • cream
  • cream
  • 2008-12-16 10:01
  • 603

windows应用进程中堆泄漏检测的简单分析和补充

一般来说,当一个应用进程存在存在内存泄漏的时候,可采用微软推荐的标准方法来进行检查。 当然,这个方法只适用于运行期库的标准堆,进程创建的私有堆不能用此方法来检测,这种情况我们暂时不考虑。 ...

基于MINA构建简单高性能的NIO应用-优化指南<转>

19 February 2010 <div class="content" style="color: #333333; font

基于MINA构建简单高性能的NIO应用

本文为Sparkle发于《程序员》2008年2月刊的文章,与《程序员》的协议,可以在个人博客中发布,转载请保留出处。 前言 MINA是Trustin Lee最新制作的Java通讯框架。通讯框架的主要作用是封装底层IO操作,提供高级的操作API。比较出名的通讯框架有C++的ACE、Python的 Twisted,而Java的通讯框架还有QuickServer、Netty2、Cindy、Grizzly等。 <
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)