Noip2015提高组Day1 “神奇的幻方”题解

原创 2016年08月28日 22:36:02

(第一次用博客写题解:])

Noip2015提高组Day1第一题    神奇的幻方

描述

幻方是一种很神奇的 N ∗ N 矩阵:它由数字 1,2,3, … … , N ∗ N 构成,且每行、每列及两条对角线上的数字之和都相同。

当 N 为奇数时,我们可以通过以下方法构建一个幻方: 首先将 1 写在第一行的中间。

之后,按如下方式从小到大依次填写每个数 K(K = 2,3, … , N ∗ N) :

  1. 若 (K − 1) 在第一行但不在最后一列,则将 K 填在最后一行, (K − 1) 所在列的右一列;
  2. 若 (K − 1) 在最后一列但不在第一行,则将 K 填在第一列,(K − 1) 所在行的上一行;
  3. 若 (K − 1) 在第一行最后一列,则将 K 填在 (K − 1) 的正下方;
  4. 若 (K − 1) 既不在第一行,也不在最后一列,如果 (K − 1) 的右上方还未填数, 则将 K 填在(K − 1)的右上方,否则将 K 填在 (K − 1) 的正下方。

现给定 N,请按上述方法构造 N ∗ N 的幻方。

格式

输入格式

一个整数 N,即幻方的大小。

输出格式

输出文件包含 N 行,每行 N 个整数,即按上述方法构造出的 N ∗ N 的幻方。相邻两个整数之间用单个空格隔开。

样例1

样例输入1

3

样例输出1

8 1 6
3 5 7
4 9 2

这是去年的世纪大水题,纯模拟就行。

我用了一个二维数组来储存数据,然后用一个大循环来控制,在循环里,i是每次填的数
while ( i < n * n )
进循环后,先填数再调整及判断,x和y可以理解为填的空的坐标
h [x] [y] = ++ i;
调整前,先设置了一个flag标记,记录当前状态,调整时,判断目前坐标的位置并把特殊的位置也纳入在内
if ( x == 1 && y != n ) { flag = 1; x = n , y ++; }
if ( y == n && x != 1 && flag == 0 ) { flag = 2; y = 1 , x --; }
if ( x == 1 && y == n && flag == 0 ) { flag = 3; y = 1 ; x = n;}
if ( flag == 0 ){ x -- , y ++; }
后面三个if里有判断当前flag的状态是避免调整了以后碰巧符合另一个位置,flag的可能值有0,1,2,3分别代表调整前坐标处在的状态
if ( h [x] [y] )
{
	switch ( flag )
	{
		case 0 : x += 2 , y --; break;
		case 1 : x = 1; break;
		case 2 : x ++; break;
		case 3 : x = 2 , y = n; break;
	}
}
这个判断是避免调整之后坐标指向的点已经被填了,于是应题目要求做出另外调整
for ( int j = 1 ; j <= n ; j ++ )
{
	for ( int k = 1 ; k <= n ; k ++ )
		printf ( "%d " , h [j] [k] );
	putchar ( '\n' );
}
最后输出就好了。
下面附上全部代码和运行效果:
#include <cstdio>
int h [40] [40] , n , x , y , i , flag;
int main()
{
	scanf ( "%d" , &n );
	x = 1 , y = n / 2 + 1 , i = 0;
	while ( i < n * n )
	{
		flag = 0;
		h [x] [y] = ++ i;
		if ( x == 1 && y != n ) { flag = 1; x = n , y ++; }
		if ( y == n && x != 1 && flag == 0 ) { flag = 2; y = 1 , x --; }
		if ( x == 1 && y == n && flag == 0 ) { flag = 3; y = 1 ; x = n;}
		if ( flag == 0 ){ x -- , y ++; }
		if ( h [x] [y] )
		{
			switch ( flag )
			{
				case 0 : x += 2 , y --; break;
				case 1 : x = 1; break;
				case 2 : x ++; break;
				case 3 : x = 2 , y = n; break;
			}
		}
	}
	for ( int j = 1 ; j <= n ; j ++ )
	{
		for ( int k = 1 ; k <= n ; k ++ )
			printf ( "%d " , h [j] [k] );
		putchar ( '\n' );
	}
	return 0;
}


[NOIP2015]神奇的幻方

直接模拟即可#include #include #include #include using namespace std; int n; int tot=0; int s[100][100]; vo...

NOIP2015 神奇的幻方 解题报告(水题模拟)

在线评测: http://codevs.cn/problem/4510/ 整体思路: 枚举一的位置,然后模拟就行了 失误之处: 数据<39,然后,我就把记录上一个点的数组...

NOIP2015复赛提高组day1(A:神奇的幻方 B:信息传递 C:斗地主)

今天原本不想写题解的,但还是写了,毕竟不能落太久。。 但是题解肯定很粗糙 A题: 向来是水题根据题意随便模拟一下就好了#include #define M 55 int a[M][M]; int...

【NOIP2015提高组Day1】 神奇的幻方

【问题描述】 幻方是一种很神奇的 N*N矩阵:它由数字1,2,3, … … ,N*N 构成,且每行、每列及两条对角线上的数字之和都相同。 当N为奇数时,我们可以通过以下方法构建一个幻方: 首先将1...

神奇的幻方 NOIP2015 提高组 Day1 T1

洛谷 P2615 神奇的幻方题目描述幻方是一种很神奇的N*N矩阵:它由数字1,2,3,……,N*N构成,且每行、每列及两条对角线上的数字之和都相同。当N为奇数时,我们可以通过以下方法构建一个幻方:首先...

【NOIP2015】Day1T1 神奇的幻方

神奇的幻方 Description 幻方是一种很神奇的 N*N 矩阵:它由数字 1,2,3, … … , N*N 构成,且每行、每列及两条对角线上的数字之和都相同。 当N为奇数时,我们可以通过以下方...
  • Bobby_Z
  • Bobby_Z
  • 2016年10月27日 20:16
  • 356

NOIP2015提高组 神奇的幻方

NOIP2015提高组 神奇的幻方 题目描述 幻方是一种很神奇的N*N矩阵:它由数字1,2,3,……,N*N构成,且每行、每列及两条对角线上的数字之和都相同。 当N为奇数时,我们可以通过以下方法...

【NOIP2015】神奇的幻方

4510 神奇的幻方 noip2015day1 T1 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题解 题目描述 Description 幻方...

noip2015 day1 t2 message 伪·题解

noip2015 day1 t2 message 伪·题解

NOIP2017提高组day2T1题解(奶酪)

NOIP2017提高组day2T1,奶酪,一道有趣的题
  • cggwz
  • cggwz
  • 2017年12月08日 21:41
  • 13
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:Noip2015提高组Day1 “神奇的幻方”题解
举报原因:
原因补充:

(最多只允许输入30个字)