关闭

[置顶] 马尔可夫链

标签: 数学建模Python马尔可夫链
498人阅读 评论(1) 收藏 举报
分类:

这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
练习题
在英国,工党成员的第二代加入工党的概率为 0.5,加入保守党的概率为 0.4, 加入自由党的概率为 0.1。而保守党成员的第二代加入保守党的概率为 0.7,加入工党的 概率为 0.2,加入自由党的概率为 0.1。而自由党成员的第二代加入保守党的概率为 0.2, 加入工党的概率为 0.4,加入自由党的概率为 0.4。求自由党成员的第三代加入工党的概 率是多少?在经过较长的时间后,各党成员的后代加入各党派的概率分布是否具有稳定 性?

# -*- coding: utf-8 -*-
"""
Created on Thu Jan 12 10:42:13 2017

@author: DaiPuWei
"""
"""
    这是练习题一: 在英国,工党成员的第二代加入工党的概率为 0.5,加入保守党的概率为 
    0.4, 加入自由党的概率为 0.1。而保守党成员的第二代加入保守党的概率为 0.7,加入
    工党的 概率为 0.2,加入自由党的概率为 0.1。而自由党成员的第二代加入保守党的概率
    为 0.2, 加入工党的概率为 0.4,加入自由党的概率为 0.4。求自由党成员的第三代加入
    工党的概 率是多少?在经过较长的时间后,各党成员的后代加入各党派的概率分布是否具
    有稳定性? 
"""

import pandas as pd
import numpy as np

def run_main():
    """
        这是主函数
    """

    #党派名称
    party_name = ['工人党','保守党','自由党']

    #党派下一代的转移矩阵
    p = np.array([0.5,0.4,0.1,0.7,0.2,0.1,0.2,0.4,0.4]).reshape((3,3))
    party_transition_matrix = pd.DataFrame(p,index = party_name,columns = party_name)

    #第一次概率分布
    probility = [0.,0.,0.]
    sumall = sum(p)    
    for i in range(3):
        probility[i] = sumall[i]/sum(sumall)
    first_probility = pd.Series(probility,index = party_name)

    #自由党成员第三代计入工人党的概率
    tmp = first_probility * party_transition_matrix
    print('自由党成员第三代计入工人党的概率为:%f' %tmp['工人党']['自由党'])    

    #各党派成员的后代假如各党派的概率分布
    a,b = np.linalg.eig(party_transition_matrix)
    finally_probility = []
    for i in range(len(b)):s
        if all(b[i]>0):
            finally_probility = b[i]
            break
    finally_probility = finally_probility / sum(finally_probility)
    Finally_probility = pd.Series(finally_probility,index = party_name)
    print('各党派成员的后代假如各党派的概率分布如下:')
    print(Finally_probility)


if __name__ == '__main__':
    run_main()

这里写图片描述

2
0
查看评论

机器学习知识点(十)马尔可夫链

马尔可夫链概述 马尔可夫链因安德烈·马尔可夫(Andrey Markov,1856-1922)得名,是数学中具有马尔可夫性质的离散时间随机过程。该过程中,在给定当前知识或信息的情况下,过去(即当期以前的历史状态)对于预测将来(即当期以后的未来状态)是无关的。   时间和...
  • fjssharpsword
  • fjssharpsword
  • 2017-03-03 09:37
  • 2962

【随机过程】马尔可夫链(1)

【随机过程】马尔可夫链标签(空格分隔): 【信号处理】声明:引用请注明出处http://blog.csdn.net/lg1259156776/说明:马尔科夫链是一个离散的马尔科夫过程,本文主要对基本的研究思路和应用进行梳理,通过具体的实例来总结是一个非常好的尝试。马尔科夫链的一个应用案例:排队论比如...
  • LG1259156776
  • LG1259156776
  • 2015-11-04 22:45
  • 3713

马尔可夫链算法原理与实现

马尔可夫链算法原理与实现@(ML)[machine learining]马尔可夫链算法原理与实现 一概述 二基本流程 1得到语句 2句子出现的概率 3马尔可夫假设 4计算条件概率 5结果 (一)概述参考自《数学之美》第3章 在计算机的早期时代,约1980前,科学家们倾向于模仿人类的思维来让计算机读...
  • jediael_lu
  • jediael_lu
  • 2017-08-06 21:43
  • 452

马尔可夫链

1.什么是随机过程? 在当代科学与社会的广阔天地里,人们都可以看到一种叫作随机过程的数学模型:从银河亮度的起伏到星系空间的物质分布、从分子的布朗运动到原子的蜕变过程,从化学反应动力学到电话通讯理论、从谣言的传播到传染病的流行、从市场预测到密码破译,随机过程理论及其应用几乎无所不在。人类历史上第...
  • u010064842
  • u010064842
  • 2013-10-24 00:44
  • 2799

基于图的评级算法基础——马尔可夫链

本文只介绍离散时间的马尔可夫链,但这对于理解接下来要讲的PageRank算法、HITS算法和TextRank算法足够了。
  • l294265421
  • l294265421
  • 2016-08-18 23:22
  • 757

马尔可夫链算法

引言:   我们现在准备做的就是给定一个由不同的单词组成的句子,由这个句子产生一些随机的可以读的英语文本。 马尔可夫链可以比较好的完成这个任务!   该算法把每个短语分割为两个部分:一部分是由多个词构成的前缀,另一部分是只包含一个词的后缀。马尔可夫链算法能够 生成输出短语的序列,其方法是依据 原文本...
  • leolinsheng
  • leolinsheng
  • 2014-03-25 18:01
  • 3076

利用马尔可夫链生成随机文本

二阶马尔可夫链: 例如:of the people, by thepeople, for the people Prefix(后缀数组)Suffix of the            people ...
  • utimes
  • utimes
  • 2013-07-02 18:33
  • 3026

R语言中实现马尔可夫链蒙特卡罗MCMC模型

什么是MCMC,什么时候使用它? MCMC只是一个从分布抽样的算法。 这只是众多算法之一。这个术语代表“马尔可夫链蒙特卡洛”,因为它是一种使用“马尔可夫链”(我们将在后面讨论)的“蒙特卡罗”(即随机)方法。MCMC只是蒙特卡洛方法的一种,尽管可以将许多其他常用方法看作是MCMC的简单特例...
  • qq_19600291
  • qq_19600291
  • 2018-01-25 18:20
  • 68

[work]马尔可夫链 (Markov Chain)是什么鬼

“随机过程随机过,实变函数学十遍,微机原理闹危机,汇编语言不会编”1. 唯一让我彻底蒙圈的课程这些课程真的太难了,大学里无数人为此伤透了脑筋,挂科率杠杠的。我当初也是的,特别是随机过程这门课,上完了一学期的课,只记住了几个公式,问我干嘛的?不知道!像其他的高等数学啊,电磁场电磁波啊,通信原理啊,我都...
  • Scythe666
  • Scythe666
  • 2018-01-23 16:49
  • 128

马尔可夫链-维基百科

 http://zh.wikipedia.org/wiki/%E9%A9%AC%E5%B0%94%E5%8F%AF%E5%A4%AB%E9%93%BE        马尔可夫链,因安德烈·马尔可夫得名...
  • kevinok
  • kevinok
  • 2008-08-04 09:48
  • 1580
    个人资料
    • 访问:155578次
    • 积分:4928
    • 等级:
    • 排名:第6843名
    • 原创:329篇
    • 转载:0篇
    • 译文:0篇
    • 评论:80条
    博客专栏
    最新评论