关闭

[置顶] BP神经网络

标签: 神经网络python机器学习数学建模
980人阅读 评论(0) 收藏 举报
分类:

这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
利用BP神经网络解决蠓虫分类问题的Python代码如下:

# -*- coding: utf-8 -*-
"""
Created on Tue Jan 17 12:22:53 2017

@author: DaiPuWei
"""

'''
    神经网络模型---------BP神经网络,以蠓虫(Af,Apf两种类别)分类为例
    利用梯度下降法为例
'''

import pandas as pd
import math
import random

def make_matrix(row,col,fill=0.0):
    '''
        构造m*n矩阵的函数,用来生成神经网络模型中的权值等矩阵
    '''

    mat = []
    for i in range(row):
        mat.append([fill]*col)
    return mat    

def sigmoid(alpha,x):
    '''
        神经网络模型的激励函数f(x) = 1/(1+e^(ax))
    '''

    y = 1.0 / (1 + math.exp(-1*alpha * x))
    return y

def sigmod_derivate(alpha,x):
    '''
        神经网络模型的激励函数f(x) = 1/(1+e^(-ax))的导数:
        g(x) = a*{1-1/[1+e^(-ax)]}
    '''

    y = alpha * (1.0 - 1.0/(1+math.exp(-1*alpha*x)))
    return y

class BPNeuralNetwork:
    '''
        BP神经网络模型的具体类
    '''

    def __init__(self):
        '''
            BP神经网络的构造函数
            input_n是输入神经元的个数
            hidden_n是中间神经元的个数
            output_n是输出神经元的个数
            input_cells是输入神经元
            hidden_cells是输入神经元
            output_cells是输入神经元
            input_correction是输入神经元的矫正系数
            output_correction是输入神经元的矫正系数
        '''
        self.input_n = 0
        self.hidden_n = 0
        self.output_n = 0
        self.input_cells = []
        self.hidden_cells = []
        self.output_cells = []
        self.input_weights = []
        self.output_weights = []
        self.input_correction = []
        self.output_correction = []

    def setup(self, input_number, hidden_number, output_number):
        '''
            BP神经网络的相关参数的初始化函数
        '''

        # input_n加1是为了引入阈值
        self.input_n = input_number + 1
        self.hidden_n = hidden_number
        self.output_n = output_number

        # init cells
        self.input_cells = [1.0] * self.input_n
        self.hidden_cells = [1.0] * self.hidden_n
        self.output_cells = [1.0] * self.output_n

        # init weight
        self.input_weights = make_matrix(self.input_n, self.hidden_n)
        self.output_weights = make_matrix(self.hidden_n, self.output_n)

        # random activate
        for i in range(self.input_n):
            for j in range(self.hidden_n):
                self.input_weights[i][j] = random.uniform(-0.2,0.2)
        for i in range(self.hidden_n):
            for j in range(self.output_n):
                self.input_weights[i][j] = random.randint(-2,2)

        # init correction matrix
        self.input_correction = make_matrix(self.input_n, self.hidden_n)
        self.output_correction = make_matrix(self.hidden_n, self.output_n)

    def predict(self,inputs,alpha):
        '''
            向输入神经元输入数据进行学习,计算各层神经元的值
            alpha是激励函数的相关系数
            inputs是输入数据
        '''

        # activate input layer
        for i in range(self.input_n-1):
            self.input_cells[i] = inputs[i]
        # activate hidden layer
        for j in range(self.hidden_n):
            total = 0.0
            for i in range(self.input_n):
                total = total + self.input_cells[i] * self.input_weights[i][j]
            self.hidden_cells[j] = sigmoid(alpha,total)
        # activate output layer
        for k in range(self.output_n):
            total =  0.0
            for j in range(self.hidden_n):
                total = total + self.hidden_cells[j] * self.output_weights[j][k]
            self.output_cells[k] = sigmoid(alpha,total)
        return self.output_cells[:]

    def back_propagate(self,inputs,ideal_output,learn,correct,alpha):
        '''
            这是向后反馈的函数,计算
            inputs是输入数据
            ideal_output是理想输出
            learn是学习效率
            correct是矫正系数
            alpha是激励函数相关系数
        '''

        # feed forward
        self.predict(inputs,alpha)

        # get output layer error
        output_deltas = [0.0] * self.output_n
        for o in range(self.output_n):
            error = ideal_output[o] - self.output_cells[o]
            output_deltas[o] = sigmod_derivate(alpha,self.output_cells[o]) * error

        # get hidden layer error
        hidden_deltas = [0.0] * self.hidden_n
        for h in range(self.hidden_n):
            error = 0.0
            for o in range(self.output_n):
                error = error + output_deltas[o] - self.output_weights[h][o]
            hidden_deltas[h] = sigmod_derivate(alpha,self.hidden_cells[h]) * error

        # update output weights
        for h in range(self.hidden_n):
            for o in range(self.output_n):
                change = output_deltas[o] * self.hidden_cells[h]
                self.output_weights[h][o] = self.output_weights[h][o] + learn *change + correct *self.output_correction[h][o]
                self.output_correction[h][o] = change

        # update  input weights
        for i in range(self.input_n):
            for h in range(self.hidden_n):
                change = hidden_deltas[h] * self.input_cells[i]
                self.input_weights[i][h] = self.input_weights[i][h] + learn *change + correct *self.input_correction[i][h]
                self.output_correction[h][o] = change

        # get global error
        error = 0.0
        for o in range(len(ideal_output)):
            error = error + 0.5 * (ideal_output[o]-self.output_cells[o])**2
        return error

    def train(self,inputs,ideal_outputs,alpha,limit = 10000,learn = 0.05,correct = 0.1):
        '''
            BP神经网络模型训练函数
            inputs是输入数据
            ideal_outputs是理想输出
            limit是训练次数,默认是10000次
            correct是矫正系数
        '''

        for i in range(limit):
            error = 0.0
            for i in range(len(inputs)):
                ideal_output = ideal_outputs[i]
                input_data = inputs[i]
                error = error + self.back_propagate(input_data,ideal_output,learn,correct,alpha)

    def test(self):
        '''
            BP神经网络模型测试算法

        '''

        #读取文件数据
        with pd.ExcelFile('./蠓虫分类.xlsx') as fin:
            Af = pd.read_excel(fin,'Sheet1')
            Apf = pd.read_excel(fin,'Sheet2')
            test_data = pd.read_excel(fin,'Sheet3')

        #数据整理
        Af_len = len(Af)
        Apf_len = len(Apf)
        test_len = len(test_data)

        inputs = []
        for i in range(Af_len):
            tmp = []
            tmp.append(Af['触角'][i])
            tmp.append(Af['翅膀长度'][i])
            inputs.append(tmp)
        for i in range(Apf_len):
            tmp = []
            tmp.append(Apf['触角'][i])
            tmp.append(Apf['翅膀长度'][i])
            inputs.append(tmp)
        for i in range(test_len):
            tmp = []
            tmp.append(test_data['触角'][i])
            tmp.append(test_data['翅膀长度'][i])
            inputs.append(tmp)

        #理想输出
        ideal_outputs = []
        for i in range(Af_len):
            tmp = [1,0]
            ideal_outputs.append(tmp)
        for i in range(Apf_len):
            tmp = [0,1]
            ideal_outputs.append(tmp)
        for i in range(test_len):
            tmp = [0,0]
            ideal_outputs.append(tmp)   

        self.setup(2,3,2)
        limit = 10000
        learn = 0.05
        correct = 0.1
        alpha = 0.7
        self.train(inputs,ideal_outputs,alpha,limit,learn,correct)

        for i in range(len(inputs)-test_len,len(inputs)):
            input = inputs[i]
            result = self.predict(input,alpha)
            print(result)

if __name__ == '__main__':
    BP = BPNeuralNetwork()
    BP.test()

这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述

3
0
查看评论

BP神经网络基本原理

2.1 BP神经网络基本原理     BP网络模型处理信息的基本原理是:输入信号Xi通过中间节点(隐层点)作用于输出节点,经过非线形变换,产生输出信号Yk,网络训练的每个样本包括输入向量X和期望输出量t,网络输出值Y与期望输出值t之间的偏差,通过调整输入节点与...
  • byxdaz
  • byxdaz
  • 2005-11-22 17:06
  • 78547

BP神经网络

今天来讲BP神经网络,神经网络在机器学习中应用比较广泛,比如函数逼近,模式识别,分类,数据压缩,数据 挖掘等领域。接下来介绍BP神经网络的原理及实现。   Contents     1. BP神经网络的认识   2. 隐含层的选取   3. 正向传递...
  • ACdreamers
  • ACdreamers
  • 2015-03-26 22:28
  • 112585

简单易学的机器学习算法——神经网络之BP神经网络

一、BP神经网络的概念 二、BP神经网络的
  • google19890102
  • google19890102
  • 2014-06-21 11:49
  • 52525

神经网络学习 之 BP神经网络

上一次我们讲了M-P模型,它实际上就是对单个神经元的一种建模,还不足以模拟人脑神经系统的功能。由这些人工神经元构建出来的网络,才能够具有学习、联想、记忆和模式识别的能力。BP网络就是一种简单的人工神经网络。 本文具体来介绍一下一种非常常见的神经网络模型——反向传播(Back Propagation...
  • u013007900
  • u013007900
  • 2015-11-30 21:17
  • 27804

BP神经网络的前世今生

在神经网络家族中,有很多种神经网络,为什么偏偏要谈bp神经网络呢,因为bp神经网络在工业界运用较为广泛,技术相对成熟。另外,在学术界bp神经网络是一种经典的神经网络。本文会从bp神经网络的设计、结构、训练等方面进行介绍。     首先,简要介绍一下神经网络的基...
  • dengjiexian123
  • dengjiexian123
  • 2016-11-05 21:26
  • 12597

BP神经网络的数学原理及其算法实现

BP神经网络,BP即Back Propagation的缩写,也就是反向传播的意思,顾名思义,将什么反向传播?文中将会解答。不仅如此,关于隐层的含义文中也会给出个人的理解。最后会用Java实现的BP分类器作为其应用以加深印象。   很多初学者刚接触神经网络的时候都会到网上找相关的介绍,看了很多数学原理...
  • zhongkejingwang
  • zhongkejingwang
  • 2015-03-25 09:25
  • 70719

bp神经网络及matlab实现

本文主要内容包括: (1) 介绍神经网络基本原理,(2) AForge.NET实现前向神经网络的方法,(3) Matlab实现前向神经网络的方法 。 第0节、引例         本文以Fisher的Iris数据集作为...
  • gongxq0124
  • gongxq0124
  • 2012-06-20 20:56
  • 281331

BP神经网络解析

第一次接触BP神经网络是在模式分类的课上,第二次接触是在Stanford的机器学习课上。接触多次,但都没有具体把它应用到研究中去。这次要做学术报告,打算试验一下它在分类识别中的效果如何,也逼自己具体代码实现一遍。BP(Back Propagation)网络是1986年由Rumelhart和McCel...
  • Linoi
  • Linoi
  • 2013-08-11 11:16
  • 5504

matlab bp神经网络的简单小例子

因为要写论文做实验,所以自己研究了一些关于神经网络的算法,用matlab做的一些小测试,使用的是《matlab神经网络43个案例分析》这本书,感觉还不错,分享一下。 使用每行的前4个数据预测第5个数据的值。 资源地址    http://download.csdn.net/det...
  • u012749168
  • u012749168
  • 2016-09-27 09:26
  • 9219

神经网络学习笔记 (四) BP神经网络

BP神经网络前面我们所讲的几节都是线性神经网络,都无法解决线性不可分的问题,今天我们就来学习非常非常经典的非线性多层前向网络——误差反向传播网络(BP——Error Back Propagtion)。BP神经网络和前面所说的线性神经网络有什么区别呢?1.隐含层可以不唯一,这就大大提高了非线性能力。 ...
  • cyhbrilliant
  • cyhbrilliant
  • 2016-09-24 17:10
  • 3426
    个人资料
    • 访问:155564次
    • 积分:4927
    • 等级:
    • 排名:第6843名
    • 原创:329篇
    • 转载:0篇
    • 译文:0篇
    • 评论:80条
    博客专栏
    最新评论