BP神经网络

原创 2017年01月17日 17:25:36

这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
利用BP神经网络解决蠓虫分类问题的Python代码如下:

# -*- coding: utf-8 -*-
"""
Created on Tue Jan 17 12:22:53 2017

@author: DaiPuWei
"""

'''
    神经网络模型---------BP神经网络,以蠓虫(Af,Apf两种类别)分类为例
    利用梯度下降法为例
'''

import pandas as pd
import math
import random

def make_matrix(row,col,fill=0.0):
    '''
        构造m*n矩阵的函数,用来生成神经网络模型中的权值等矩阵
    '''

    mat = []
    for i in range(row):
        mat.append([fill]*col)
    return mat    

def sigmoid(alpha,x):
    '''
        神经网络模型的激励函数f(x) = 1/(1+e^(ax))
    '''

    y = 1.0 / (1 + math.exp(-1*alpha * x))
    return y

def sigmod_derivate(alpha,x):
    '''
        神经网络模型的激励函数f(x) = 1/(1+e^(-ax))的导数:
        g(x) = a*{1-1/[1+e^(-ax)]}
    '''

    y = alpha * (1.0 - 1.0/(1+math.exp(-1*alpha*x)))
    return y

class BPNeuralNetwork:
    '''
        BP神经网络模型的具体类
    '''

    def __init__(self):
        '''
            BP神经网络的构造函数
            input_n是输入神经元的个数
            hidden_n是中间神经元的个数
            output_n是输出神经元的个数
            input_cells是输入神经元
            hidden_cells是输入神经元
            output_cells是输入神经元
            input_correction是输入神经元的矫正系数
            output_correction是输入神经元的矫正系数
        '''
        self.input_n = 0
        self.hidden_n = 0
        self.output_n = 0
        self.input_cells = []
        self.hidden_cells = []
        self.output_cells = []
        self.input_weights = []
        self.output_weights = []
        self.input_correction = []
        self.output_correction = []

    def setup(self, input_number, hidden_number, output_number):
        '''
            BP神经网络的相关参数的初始化函数
        '''

        # input_n加1是为了引入阈值
        self.input_n = input_number + 1
        self.hidden_n = hidden_number
        self.output_n = output_number

        # init cells
        self.input_cells = [1.0] * self.input_n
        self.hidden_cells = [1.0] * self.hidden_n
        self.output_cells = [1.0] * self.output_n

        # init weight
        self.input_weights = make_matrix(self.input_n, self.hidden_n)
        self.output_weights = make_matrix(self.hidden_n, self.output_n)

        # random activate
        for i in range(self.input_n):
            for j in range(self.hidden_n):
                self.input_weights[i][j] = random.uniform(-0.2,0.2)
        for i in range(self.hidden_n):
            for j in range(self.output_n):
                self.input_weights[i][j] = random.randint(-2,2)

        # init correction matrix
        self.input_correction = make_matrix(self.input_n, self.hidden_n)
        self.output_correction = make_matrix(self.hidden_n, self.output_n)

    def predict(self,inputs,alpha):
        '''
            向输入神经元输入数据进行学习,计算各层神经元的值
            alpha是激励函数的相关系数
            inputs是输入数据
        '''

        # activate input layer
        for i in range(self.input_n-1):
            self.input_cells[i] = inputs[i]
        # activate hidden layer
        for j in range(self.hidden_n):
            total = 0.0
            for i in range(self.input_n):
                total = total + self.input_cells[i] * self.input_weights[i][j]
            self.hidden_cells[j] = sigmoid(alpha,total)
        # activate output layer
        for k in range(self.output_n):
            total =  0.0
            for j in range(self.hidden_n):
                total = total + self.hidden_cells[j] * self.output_weights[j][k]
            self.output_cells[k] = sigmoid(alpha,total)
        return self.output_cells[:]

    def back_propagate(self,inputs,ideal_output,learn,correct,alpha):
        '''
            这是向后反馈的函数,计算
            inputs是输入数据
            ideal_output是理想输出
            learn是学习效率
            correct是矫正系数
            alpha是激励函数相关系数
        '''

        # feed forward
        self.predict(inputs,alpha)

        # get output layer error
        output_deltas = [0.0] * self.output_n
        for o in range(self.output_n):
            error = ideal_output[o] - self.output_cells[o]
            output_deltas[o] = sigmod_derivate(alpha,self.output_cells[o]) * error

        # get hidden layer error
        hidden_deltas = [0.0] * self.hidden_n
        for h in range(self.hidden_n):
            error = 0.0
            for o in range(self.output_n):
                error = error + output_deltas[o] - self.output_weights[h][o]
            hidden_deltas[h] = sigmod_derivate(alpha,self.hidden_cells[h]) * error

        # update output weights
        for h in range(self.hidden_n):
            for o in range(self.output_n):
                change = output_deltas[o] * self.hidden_cells[h]
                self.output_weights[h][o] = self.output_weights[h][o] + learn *change + correct *self.output_correction[h][o]
                self.output_correction[h][o] = change

        # update  input weights
        for i in range(self.input_n):
            for h in range(self.hidden_n):
                change = hidden_deltas[h] * self.input_cells[i]
                self.input_weights[i][h] = self.input_weights[i][h] + learn *change + correct *self.input_correction[i][h]
                self.output_correction[h][o] = change

        # get global error
        error = 0.0
        for o in range(len(ideal_output)):
            error = error + 0.5 * (ideal_output[o]-self.output_cells[o])**2
        return error

    def train(self,inputs,ideal_outputs,alpha,limit = 10000,learn = 0.05,correct = 0.1):
        '''
            BP神经网络模型训练函数
            inputs是输入数据
            ideal_outputs是理想输出
            limit是训练次数,默认是10000次
            correct是矫正系数
        '''

        for i in range(limit):
            error = 0.0
            for i in range(len(inputs)):
                ideal_output = ideal_outputs[i]
                input_data = inputs[i]
                error = error + self.back_propagate(input_data,ideal_output,learn,correct,alpha)

    def test(self):
        '''
            BP神经网络模型测试算法

        '''

        #读取文件数据
        with pd.ExcelFile('./蠓虫分类.xlsx') as fin:
            Af = pd.read_excel(fin,'Sheet1')
            Apf = pd.read_excel(fin,'Sheet2')
            test_data = pd.read_excel(fin,'Sheet3')

        #数据整理
        Af_len = len(Af)
        Apf_len = len(Apf)
        test_len = len(test_data)

        inputs = []
        for i in range(Af_len):
            tmp = []
            tmp.append(Af['触角'][i])
            tmp.append(Af['翅膀长度'][i])
            inputs.append(tmp)
        for i in range(Apf_len):
            tmp = []
            tmp.append(Apf['触角'][i])
            tmp.append(Apf['翅膀长度'][i])
            inputs.append(tmp)
        for i in range(test_len):
            tmp = []
            tmp.append(test_data['触角'][i])
            tmp.append(test_data['翅膀长度'][i])
            inputs.append(tmp)

        #理想输出
        ideal_outputs = []
        for i in range(Af_len):
            tmp = [1,0]
            ideal_outputs.append(tmp)
        for i in range(Apf_len):
            tmp = [0,1]
            ideal_outputs.append(tmp)
        for i in range(test_len):
            tmp = [0,0]
            ideal_outputs.append(tmp)   

        self.setup(2,3,2)
        limit = 10000
        learn = 0.05
        correct = 0.1
        alpha = 0.7
        self.train(inputs,ideal_outputs,alpha,limit,learn,correct)

        for i in range(len(inputs)-test_len,len(inputs)):
            input = inputs[i]
            result = self.predict(input,alpha)
            print(result)

if __name__ == '__main__':
    BP = BPNeuralNetwork()
    BP.test()

这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述

版权声明:本文为博主原创文章,若需转载,请注明http://blog.csdn.net/qq_30091945

相关文章推荐

借助matlab神经网络工具箱实现蠓虫分类

问题 神经网络模型 因为是一个简单的二分类问题,输出的神经元设为1,隐含层神经元设为2,输出结果以0—1代表两类,由于输入有两个变量,因此可建立一个2—2—1的神经网络模型如下所示:...
  • wyquin
  • wyquin
  • 2016年03月26日 15:18
  • 1504

BP神经网络的拓扑优化算法

  • 2017年11月12日 15:35
  • 15KB
  • 下载

神经网络及反向传播(bp)算法详解

神经元和感知器的本质一样神经元和感知器本质上是一样的,只不过感知器的时候,它的激活函数是阶跃函数;而当我们说神经元时,激活函数往往选择为sigmoid函数或tanh函数。如下图所示:    输入节点...

BP神经网络的语音识别Matlab程序

  • 2017年11月14日 21:27
  • 370KB
  • 下载

BP神经网络算法学习---基础理论1

本文转自http://blog.csdn.net/acdreamers/article/details/44657439,对于BP基本原理的介绍非常的干净利索清晰,感谢原作者的付出和分享。 今天来...

BP神经网络推导

  • 2017年11月12日 11:10
  • 45KB
  • 下载

BP神经网络模型与学习算法

一,什么是BP "BP(Back Propagation)网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:BP神经网络
举报原因:
原因补充:

(最多只允许输入30个字)