BP神经网络

原创 2017年01月17日 17:25:36

这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
利用BP神经网络解决蠓虫分类问题的Python代码如下:

# -*- coding: utf-8 -*-
"""
Created on Tue Jan 17 12:22:53 2017

@author: DaiPuWei
"""

'''
    神经网络模型---------BP神经网络,以蠓虫(Af,Apf两种类别)分类为例
    利用梯度下降法为例
'''

import pandas as pd
import math
import random

def make_matrix(row,col,fill=0.0):
    '''
        构造m*n矩阵的函数,用来生成神经网络模型中的权值等矩阵
    '''

    mat = []
    for i in range(row):
        mat.append([fill]*col)
    return mat    

def sigmoid(alpha,x):
    '''
        神经网络模型的激励函数f(x) = 1/(1+e^(ax))
    '''

    y = 1.0 / (1 + math.exp(-1*alpha * x))
    return y

def sigmod_derivate(alpha,x):
    '''
        神经网络模型的激励函数f(x) = 1/(1+e^(-ax))的导数:
        g(x) = a*{1-1/[1+e^(-ax)]}
    '''

    y = alpha * (1.0 - 1.0/(1+math.exp(-1*alpha*x)))
    return y

class BPNeuralNetwork:
    '''
        BP神经网络模型的具体类
    '''

    def __init__(self):
        '''
            BP神经网络的构造函数
            input_n是输入神经元的个数
            hidden_n是中间神经元的个数
            output_n是输出神经元的个数
            input_cells是输入神经元
            hidden_cells是输入神经元
            output_cells是输入神经元
            input_correction是输入神经元的矫正系数
            output_correction是输入神经元的矫正系数
        '''
        self.input_n = 0
        self.hidden_n = 0
        self.output_n = 0
        self.input_cells = []
        self.hidden_cells = []
        self.output_cells = []
        self.input_weights = []
        self.output_weights = []
        self.input_correction = []
        self.output_correction = []

    def setup(self, input_number, hidden_number, output_number):
        '''
            BP神经网络的相关参数的初始化函数
        '''

        # input_n加1是为了引入阈值
        self.input_n = input_number + 1
        self.hidden_n = hidden_number
        self.output_n = output_number

        # init cells
        self.input_cells = [1.0] * self.input_n
        self.hidden_cells = [1.0] * self.hidden_n
        self.output_cells = [1.0] * self.output_n

        # init weight
        self.input_weights = make_matrix(self.input_n, self.hidden_n)
        self.output_weights = make_matrix(self.hidden_n, self.output_n)

        # random activate
        for i in range(self.input_n):
            for j in range(self.hidden_n):
                self.input_weights[i][j] = random.uniform(-0.2,0.2)
        for i in range(self.hidden_n):
            for j in range(self.output_n):
                self.input_weights[i][j] = random.randint(-2,2)

        # init correction matrix
        self.input_correction = make_matrix(self.input_n, self.hidden_n)
        self.output_correction = make_matrix(self.hidden_n, self.output_n)

    def predict(self,inputs,alpha):
        '''
            向输入神经元输入数据进行学习,计算各层神经元的值
            alpha是激励函数的相关系数
            inputs是输入数据
        '''

        # activate input layer
        for i in range(self.input_n-1):
            self.input_cells[i] = inputs[i]
        # activate hidden layer
        for j in range(self.hidden_n):
            total = 0.0
            for i in range(self.input_n):
                total = total + self.input_cells[i] * self.input_weights[i][j]
            self.hidden_cells[j] = sigmoid(alpha,total)
        # activate output layer
        for k in range(self.output_n):
            total =  0.0
            for j in range(self.hidden_n):
                total = total + self.hidden_cells[j] * self.output_weights[j][k]
            self.output_cells[k] = sigmoid(alpha,total)
        return self.output_cells[:]

    def back_propagate(self,inputs,ideal_output,learn,correct,alpha):
        '''
            这是向后反馈的函数,计算
            inputs是输入数据
            ideal_output是理想输出
            learn是学习效率
            correct是矫正系数
            alpha是激励函数相关系数
        '''

        # feed forward
        self.predict(inputs,alpha)

        # get output layer error
        output_deltas = [0.0] * self.output_n
        for o in range(self.output_n):
            error = ideal_output[o] - self.output_cells[o]
            output_deltas[o] = sigmod_derivate(alpha,self.output_cells[o]) * error

        # get hidden layer error
        hidden_deltas = [0.0] * self.hidden_n
        for h in range(self.hidden_n):
            error = 0.0
            for o in range(self.output_n):
                error = error + output_deltas[o] - self.output_weights[h][o]
            hidden_deltas[h] = sigmod_derivate(alpha,self.hidden_cells[h]) * error

        # update output weights
        for h in range(self.hidden_n):
            for o in range(self.output_n):
                change = output_deltas[o] * self.hidden_cells[h]
                self.output_weights[h][o] = self.output_weights[h][o] + learn *change + correct *self.output_correction[h][o]
                self.output_correction[h][o] = change

        # update  input weights
        for i in range(self.input_n):
            for h in range(self.hidden_n):
                change = hidden_deltas[h] * self.input_cells[i]
                self.input_weights[i][h] = self.input_weights[i][h] + learn *change + correct *self.input_correction[i][h]
                self.output_correction[h][o] = change

        # get global error
        error = 0.0
        for o in range(len(ideal_output)):
            error = error + 0.5 * (ideal_output[o]-self.output_cells[o])**2
        return error

    def train(self,inputs,ideal_outputs,alpha,limit = 10000,learn = 0.05,correct = 0.1):
        '''
            BP神经网络模型训练函数
            inputs是输入数据
            ideal_outputs是理想输出
            limit是训练次数,默认是10000次
            correct是矫正系数
        '''

        for i in range(limit):
            error = 0.0
            for i in range(len(inputs)):
                ideal_output = ideal_outputs[i]
                input_data = inputs[i]
                error = error + self.back_propagate(input_data,ideal_output,learn,correct,alpha)

    def test(self):
        '''
            BP神经网络模型测试算法

        '''

        #读取文件数据
        with pd.ExcelFile('./蠓虫分类.xlsx') as fin:
            Af = pd.read_excel(fin,'Sheet1')
            Apf = pd.read_excel(fin,'Sheet2')
            test_data = pd.read_excel(fin,'Sheet3')

        #数据整理
        Af_len = len(Af)
        Apf_len = len(Apf)
        test_len = len(test_data)

        inputs = []
        for i in range(Af_len):
            tmp = []
            tmp.append(Af['触角'][i])
            tmp.append(Af['翅膀长度'][i])
            inputs.append(tmp)
        for i in range(Apf_len):
            tmp = []
            tmp.append(Apf['触角'][i])
            tmp.append(Apf['翅膀长度'][i])
            inputs.append(tmp)
        for i in range(test_len):
            tmp = []
            tmp.append(test_data['触角'][i])
            tmp.append(test_data['翅膀长度'][i])
            inputs.append(tmp)

        #理想输出
        ideal_outputs = []
        for i in range(Af_len):
            tmp = [1,0]
            ideal_outputs.append(tmp)
        for i in range(Apf_len):
            tmp = [0,1]
            ideal_outputs.append(tmp)
        for i in range(test_len):
            tmp = [0,0]
            ideal_outputs.append(tmp)   

        self.setup(2,3,2)
        limit = 10000
        learn = 0.05
        correct = 0.1
        alpha = 0.7
        self.train(inputs,ideal_outputs,alpha,limit,learn,correct)

        for i in range(len(inputs)-test_len,len(inputs)):
            input = inputs[i]
            result = self.predict(input,alpha)
            print(result)

if __name__ == '__main__':
    BP = BPNeuralNetwork()
    BP.test()

这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述

版权声明:本文为博主原创文章,未经博主允许不得转载。若需转载,请注明http://blog.csdn.net/qq_30091945 举报

相关文章推荐

BP神经网络

1、什么是BP神经网络?人工神经网络是20世纪80年代以来人工智能领域兴起的研究热点。它从信息处理角度对人脑神经元网络进行抽象,建立某种简单模型,按不同的连接方式组成不同的网络。 神经网络是一种运算...

BP神经网络

利用BP神经网络解决蠓虫分类问题的Python代码如下:# -*- coding: utf-8 -*- """ Created on Tue Jan 17 12:22:53 2017@author: ...

我是如何成为一名python大咖的?

人生苦短,都说必须python,那么我分享下我是如何从小白成为Python资深开发者的吧。2014年我大学刚毕业..

BP神经网络

BP神经网络原理、推导

BP神经网络

本文介绍机器学习里的BP神经网络算法,

BP神经网络

转载自http://blog.csdn.net/zhongkejingwang/article/details/44514073  什么是BP网络 BP神经网络,B...

神经网络之BP神经网络

转载 http://blog.csdn.net/google19890102/article/details/32723459#t1

BP神经网络

Contents BP神经网络的认识隐含层的选取正向传递子过程反向传递子过程BP神经网络的注意点BP神经网络的C++实现 1. BP神经网络的认识 BP(Back Propaga...

BP神经网络

BP神经网络BP神经网络 概述 BP算法基本原理 1 BP网络模型 2 BP网络的标准学习算法 3 BP算法的直观解释1 概述Rumelhart,McClelland于1985年提出了BP网络的误差...

BP神经网络

BP神经网络模型拓扑结构包括输入层(input)、隐层(hide layer)和输出层(output layer)。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平...

bp神经网络

这是一个三层的神经网络模型,Input输入数据的特征,Output层输出结果,中间层是隐藏层。bp算法是最小化均方误差,即E=1/2Ssigma(f(xi)-yi)^2我们用梯度下降法优化,这里求偏导...
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)