算法提高 矩阵相乘

原创 2017年02月12日 15:22:33

问题描述
  小明最近在为线性代数而头疼,线性代数确实很抽象(也很无聊),可惜他的老师正在讲这矩阵乘法这一段内容。
  当然,小明上课打瞌睡也没问题,但线性代数的习题可是很可怕的。
  小明希望你来帮他完成这个任务。

  现在给你一个ai行aj列的矩阵和一个bi行bj列的矩阵,
  要你求出他们相乘的积(当然也是矩阵)。
  (输入数据保证aj=bi,不需要判断)
输入格式
  输入文件共有ai+bi+2行,并且输入的所有数为整数(long long范围内)。
  第1行:ai 和 aj
  第2~ai+2行:矩阵a的所有元素
  第ai+3行:bi 和 bj
  第ai+3~ai+bi+3行:矩阵b的所有元素
输出格式
  输出矩阵a和矩阵b的积(矩阵c)
  (ai行bj列)
样例输入
2 2
12 23
45 56
2 2
78 89
45 56
样例输出
1971 2356
6030 7141

import java.io.BufferedInputStream;
import java.math.BigInteger;
import java.util.Scanner;

public class Main {

    public static BigInteger[][] Mul(BigInteger[][] A ,int col1,BigInteger[][] B,int col2){
        BigInteger[][] C = new BigInteger[A.length][col2];
        for ( int i = 0 ; i < A.length ; i++){
            for ( int k = 0 ; k < col2 ; k++){
                BigInteger sum = BigInteger.ZERO;
                for ( int j = 0 ; j < col1 ; j++){
                    sum = sum.add(A[i][j].multiply(B[j][k]));
                }
                C[i][k] = sum; 
            }
        }
        return C;
    }

    public static void main(String[] args) {
        // TODO Auto-generated method stub
        Scanner in = new Scanner(new BufferedInputStream(System.in));
        int i,j,m,n;
        i = in.nextInt();
        j = in.nextInt();
        BigInteger[][] A = new BigInteger[i][j];
        for ( int a = 0 ; a < i ; a++){
            for ( int b = 0 ; b < j ; b++){
                A[a][b] = new BigInteger(in.next());
            }
        }
        m = in.nextInt();
        n = in.nextInt();
        BigInteger[][] B = new BigInteger[m][n];
        for ( int a = 0 ; a < m ; a++){
            for ( int b = 0 ; b < n ; b++){
                B[a][b] = new BigInteger(in.next());
            }
        }
        BigInteger[][] C = Mul(A, j, B, n);
        for ( int p = 0 ; p < C.length ; p++){
            System.out.print(C[p][0]);
            for ( int q = 1 ; q < n ; q++){
                System.out.print(" "+C[p][q]);
            }
            System.out.println();
        }
        in.close();
    }

}

这里写图片描述

版权声明:本文为博主原创文章,若需转载,请注明http://blog.csdn.net/qq_30091945

相关文章推荐

算法提高 矩阵乘法

问题描述   有n个矩阵,大小分别为a0*a1, a1*a2, a2*a3, ..., a[n-1]*a[n],现要将它们依次相乘,只能使用结合率,求最少需要多少次运算。   两个大小分别为p*q和q...

【蓝桥】算法提高 矩阵乘法

算法提高 矩阵乘法   时间限制:3.0s   内存限制:256.0MB      问题描述   有n个矩阵,大小分别为a0*a1, a1*a2, a2*a3, ..., a[n-1]*a...
  • Puyar_
  • Puyar_
  • 2017年02月05日 23:18
  • 1179

算法提高 矩阵乘法

算法提高 矩阵乘法 时间限制:3.0s 内存限制:256.0MB 提交此题 问题描述   有n个矩阵,大小分别为a0*a1, a1*a2, a2*a3, …, a[n-1]*a[n],现要...

算法提高 矩阵相乘

问题描述   小明最近在为线性代数而头疼,线性代数确实很抽象(也很无聊),可惜他的老师正在讲这矩阵乘法这一段内容。   当然,小明上课打瞌睡也没问题,但线性代数的习题可是很可怕的。   小明希望你来...

矩阵相乘经典算法(C)

  • 2013年11月29日 12:40
  • 304B
  • 下载

矩阵相乘的快速算法

  • 2008年06月27日 17:00
  • 71KB
  • 下载

算法之动态规划-矩阵链相乘(matrix-chain multiplication)

Matrix-chain multiplication给定一串矩阵 A1,A2...AnA1,A2...An,计算矩阵的值:A1A2A3..AnA_1A_2A_3..A_n。对于这串矩阵序列,不同的加...

strassen矩阵相乘算法(c++版)

  • 2015年09月27日 17:54
  • 10KB
  • 下载

Toeplitz矩阵相乘快速算法

  • 2017年10月11日 21:26
  • 521KB
  • 下载

荷兰国旗问题、矩阵相乘之Strassen算法

第四十一章~四十二章:荷兰国旗问题、矩阵相乘之Strassen算法 前言     本文要讲的两个问题:荷兰国旗和矩阵相乘之Strassen算法都跟分治法相关,故把这两个问题放到...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:算法提高 矩阵相乘
举报原因:
原因补充:

(最多只允许输入30个字)