《机器学习实战》--局部加权线性回归(LWR)

原创 2017年03月17日 19:53:07

一 概述

通常情况下的线性拟合不能很好地预测所有的值,因为它容易导致欠拟合(under fitting),比如数据集是
一个钟形的曲线。而多项式拟合能拟合所有数据,但是在预测新样本的时候又会变得很糟糕,因为它导致数据的
过拟合(overfitting),不符合数据真实的模型。

局部加权回归(LWR)是非参数学习方法。 首先参数学习方法是这样一种方法:在训练完成所有数据后得到一系列训练参数,然后根据训练参数来预测新样本的值,这时不再依赖之前的训练数据了,参数值是确定的。而非参数学习方法是这样一种算法:在预测新样本值时候每次都会重新训练数据得到新的参数值,也就是说每次预测新样本都会依赖训练数据集合,所以每次得到的参数值是不确定的。

具体的介绍在我之前的斯坦福机器学习笔记(一)中有详细介绍。链接为:http://blog.csdn.net/qq_30091945/article/details/61615501

这次运用的数据是来自《机器学习实战》这本书中第八章ex0文件中的数据。

二 代码

import numpy as np
import matplotlib.pyplot as plt

def LoadDataSet(file):
    """
    :param file:文件路径
    :return: 返回测试数据与标签
    """

    ftrain = open(file)
    trainingset = []
    labelset = []
    for line in ftrain.readlines():
        LineArr = line.strip().split('\t')
        trainingset.append([float(LineArr[0]),float(LineArr[1])])
        labelset.append(float(LineArr[2]))
    return trainingset, labelset

def LWRTest(traingxarr,xarr,yarr,k):
    Xmat = np.mat(xarr)
    Ymat = np.mat(yarr)
    # m是输入数据的个数,weights是单位矩阵
    m = np.shape(Xmat)[0]
    weights = np.eye(m)
    for i in range(m):
        diffmat = traingxarr - Xmat[i,:]
        weights[i,i] = np.exp(-(diffmat*diffmat.transpose())/(2.0*k**2))
    XT = Xmat.transpose()*(weights*Xmat)
    if np.linalg.det(XT) == 0:              #矩阵的行列式为0时不能进行之后的计算
        print('This Matrix is singular, cannot do inverse')
        return
    #theta是回归系数
    theta = XT.I*Xmat.transpose()*(weights*Ymat.transpose())
    ytest= traingxarr*theta
    return ytest


def LWR(trainingset,xarr,yarr,k):
    """
    :param trianingset:训练数据集
    :param xarr: 输入样本的横坐标
    :param yarr: 输入样本的纵坐标
    :param k: 带宽参数
    :return:返回预测值
    """
    # m是输入数据的个数,weights是单位矩阵
    m = np.shape(trainingset)[0]
    ytest = np.zeros(m)
    for i in range(m):
        ytest[i] = LWRTest(trainingset[i],xarr,yarr,k)
    return  ytest

def Show(xarr,yarr,ytest,k):
    """
    :param xarr: 样本数据特征值
    :param ytest: LWR回归得到的预测
    :param yarr: 样本数据标记值
    """
    xmat = np.mat(xarr)
    strInd = xmat[:, 1].argsort(0)
    xSort = xmat[strInd][:, 0, :]
    fig = plt.figure()
    ax = fig.add_subplot(1,1,1)
    ax.plot(xSort[:, 1], ytest[strInd])
    ax.scatter(xmat[:, 1].flatten().A[0], np.mat(yarr).T.flatten().A[0], s=2, c='red')
    title = "k = "
    title += str(k)
    ax.set_title(title)
    plt.savefig("D:\\Program Files (x86)\\机器学习\\斯坦福大学机器学习\\中文笔记\\Linear Regression\\LWR\\"+title+".jpg",dpi=400,bbox_inches='tight')
    plt.show()

def run_main():
    """
        这是主函数
    """
    file = 'D:\\Program Files (x86)\\机器学习\\机器学习实战\\源代码\\Ch08\\ex0.txt'
    xarr,yarr = LoadDataSet(file)
    k = [1.0,0.01,0.003]
    for i in k:
        ytest = LWR(xarr,xarr,yarr,i)
        Show(xarr,yarr,ytest,i)


if __name__ == '__main__':
    run_main()

下面是模型运行结果如下:
k = 1.0 (欠拟合)

这里写图片描述
k = 0.01(最佳拟合)
这里写图片描述
k = 0.003(过拟合)
这里写图片描述

版权声明:本文为博主原创文章,未经博主允许不得转载。若需转载,请注明http://blog.csdn.net/qq_30091945 举报

相关文章推荐

局部线性回归(Locally Weighted Linear Regression)

简单的线性回归有可能出现欠拟合的现象,这是由于数据可能不是

【机器学习】机器学习(三):局部加权线性回归算法、Logistic回归算法

STANFORD机器学习课程(Andrew Ng主讲),第3课学习笔记。在本节中,介绍局部加权线性回归算法(Loess/LWR)和Logistic回归算法。

我是如何成为一名python大咖的?

人生苦短,都说必须python,那么我分享下我是如何从小白成为Python资深开发者的吧。2014年我大学刚毕业..

详解局部加权回归

在线性回归中,对于给定的训练集,用一个线性表达式来拟合所有数据,当训练集中输入变量和目标变量之间的确存在线性关系时,通常拟合的很好。但是如果没有明显的线性关系的话,可能就拟合不到好的效果了。比如下面坐...

梯度下降法求解线性回归问题

关于梯度下降法, 网上的帖子很多。可能是大家觉得推导很简单,所以都忽略了。对于我这种弱智加强迫症的人来说,有时候忽略过去推导过程好难受,所以自己推了一下,的确不难,这里与大家共享一下。

线性回归之梯度下降法(附代码)

写本文的目的主要是面向刚刚接触机器学习的初学者,或者对梯度下降感兴趣但不理解的人。 假如现在有以下数据,time表示所花的时间,score表示相应的分数。 time score 9 3...

《机器学习实战》--局部加权线性回归(LWR)

一 概述通常情况下的线性拟合不能很好地预测所有的值,因为它容易导致欠拟合(under fitting),比如数据集是 一个钟形的曲线。而多项式拟合能拟合所有数据,但是在预测新样本的时候又会变得很糟糕...

机器学习实战线性回归局部加权线性回归笔记

线性回归 用线性回归找到最佳拟合直线回归的目的是预测数值型数据,根据输入写出一个目标值的计算公式,这个公式就是回归方程(regression equation),变量前的系数(比如一元一次方程)称为...

机器学习---局部加权回归

Locally weighted regression(英) 非参数学习算法 non-parametric learning algorithum 1过拟合和欠拟合 y=θ 0 +θ 1 x  y ...

斯坦福机器学习笔记(一)

近期把斯坦福的机器学习课程视频翻来覆去的看,通篇阅读英文笔记。总算把线性模型吃的比较透了,现在会陆续的上传笔记。如果想要转载请注明:http://blog.csdn.net/qq_30091945

机器学习中的局部加权线性回归

看下面三幅图,x 轴是房间面积,y 轴是房价。 左图是 y = θ0 + θ1x 拟合数据集的结果。可以看到数据并不贴靠在直线上,所以拟合并不好。 中图是 y = θ0 + θ1x + θ2x...
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)