# [置顶] 《机器学习实战》--局部加权线性回归（LWR）

1032人阅读 评论(0)

## 二 代码

import numpy as np
import matplotlib.pyplot as plt

"""
:param file:文件路径
:return: 返回测试数据与标签
"""

ftrain = open(file)
trainingset = []
labelset = []
LineArr = line.strip().split('\t')
trainingset.append([float(LineArr[0]),float(LineArr[1])])
labelset.append(float(LineArr[2]))
return trainingset, labelset

def LWRTest(traingxarr,xarr,yarr,k):
Xmat = np.mat(xarr)
Ymat = np.mat(yarr)
# m是输入数据的个数,weights是单位矩阵
m = np.shape(Xmat)[0]
weights = np.eye(m)
for i in range(m):
diffmat = traingxarr - Xmat[i,:]
weights[i,i] = np.exp(-(diffmat*diffmat.transpose())/(2.0*k**2))
XT = Xmat.transpose()*(weights*Xmat)
if np.linalg.det(XT) == 0:              #矩阵的行列式为0时不能进行之后的计算
print('This Matrix is singular, cannot do inverse')
return
#theta是回归系数
theta = XT.I*Xmat.transpose()*(weights*Ymat.transpose())
ytest= traingxarr*theta
return ytest

def LWR(trainingset,xarr,yarr,k):
"""
:param trianingset:训练数据集
:param xarr: 输入样本的横坐标
:param yarr: 输入样本的纵坐标
:param k: 带宽参数
:return:返回预测值
"""
# m是输入数据的个数,weights是单位矩阵
m = np.shape(trainingset)[0]
ytest = np.zeros(m)
for i in range(m):
ytest[i] = LWRTest(trainingset[i],xarr,yarr,k)
return  ytest

def Show(xarr,yarr,ytest,k):
"""
:param xarr: 样本数据特征值
:param ytest: LWR回归得到的预测
:param yarr: 样本数据标记值
"""
xmat = np.mat(xarr)
strInd = xmat[:, 1].argsort(0)
xSort = xmat[strInd][:, 0, :]
fig = plt.figure()
ax.plot(xSort[:, 1], ytest[strInd])
ax.scatter(xmat[:, 1].flatten().A[0], np.mat(yarr).T.flatten().A[0], s=2, c='red')
title = "k = "
title += str(k)
ax.set_title(title)
plt.savefig("D:\\Program Files (x86)\\机器学习\\斯坦福大学机器学习\\中文笔记\\Linear Regression\\LWR\\"+title+".jpg",dpi=400,bbox_inches='tight')
plt.show()

def run_main():
"""
这是主函数
"""
file = 'D:\\Program Files (x86)\\机器学习\\机器学习实战\\源代码\\Ch08\\ex0.txt'
k = [1.0,0.01,0.003]
for i in k:
ytest = LWR(xarr,xarr,yarr,i)
Show(xarr,yarr,ytest,i)

if __name__ == '__main__':
run_main()

k = 1.0 (欠拟合)

k = 0.01(最佳拟合)

k = 0.003(过拟合)

1
0

个人资料
• 访问：155549次
• 积分：4927
• 等级：
• 排名：第6843名
• 原创：329篇
• 转载：0篇
• 译文：0篇
• 评论：80条
博客专栏
 数据结构与算法 文章：71篇 阅读：32636
 面试在线编程专栏 文章：71篇 阅读：31064
 数学建模专栏 文章：11篇 阅读：31980
 机器学习数据挖掘笔记 文章：10篇 阅读：10067
最新评论