关闭

[置顶] 斯坦福机器学习笔记(二)

标签: 机器学习Logistic回归GLM
677人阅读 评论(0) 收藏 举报
分类:

之前一直没时间整理这部分笔记,昨天通宵整理这部分笔记,同步网易公开课机器学习课程第四讲。资源我已经上传了,如果有需要的请转到下面的链接为:http://download.csdn.net/detail/qq_30091945/9786465
如果有人要转载请注明:http://blog.csdn.net/qq_30091945


这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述

1
0
查看评论

斯坦福大学的机器学习笔记SVM初探详解

最近在看斯坦福大学的机器学习的公开课,学习了支持向量机,再结合网上各位大神的学习经验总结了自己的一些关于支持向量机知识。 一、什么是支持向量机(SVM)? 1、支持向量机(Support Vector Machine,常简称为SVM)是一种监督式学习的方法,可广泛地应用于统计分类以及回归分析。支持向...
  • AnneQiQi
  • AnneQiQi
  • 2017-04-11 14:41
  • 1023

斯坦福机器学习网易公开课笔记14

主成分分析是一种常用的降低数据维度的算法。先假设我们有一个非监督学习问题,给出一个包含m个样本的训练数据集{x^((1) ),…,x^((m))},每个样本数据都是一个n维向量。目标是将其降维成为一个维度更低的数据集合,降维后每个样本数据都是一个k维向量,k远小于n。
  • zhonglj0314
  • zhonglj0314
  • 2017-03-13 18:52
  • 455

斯坦福机器学习笔记七

K均值算法之前说到的算法都是监督学习算法,在监督学习中,训练集都是带标签的,我们的目标是找到能够区分正负样本的决策边界或者根据带标签的数据拟合出假设函数。现在开始介绍非监督学习算法,在非监督学习中,数据集没有标签,我们需要做的是将一系列无标签的数据集数据输入到一个算法中,让算法去找这些数据的内在结构...
  • a_yangfh
  • a_yangfh
  • 2017-05-04 09:00
  • 248

【机器学习-斯坦福】学习笔记2 - 监督学习应用与梯度下降

监督学习应用与梯度下降 本课内容: 1、  线性回归 2、  梯度下降 3、  正规方程组     (复习)监督学习:告诉算法每个样本的正确答案,学习后的算法对新的输入也能输入正确的答案   1、  线性回归 例:Alvi...
  • maverick1990
  • maverick1990
  • 2013-09-05 22:53
  • 9481

【机器学习-斯坦福】学习笔记6 - 朴素贝叶斯

本次课程大纲: 1、 朴素贝叶斯 - 朴素贝叶斯事件模型 2、 神经网络(简要) 3、 支撑向量机(SVM)铺垫 – 最大间隔分类器
  • maverick1990
  • maverick1990
  • 2013-11-14 12:41
  • 4835

斯坦福机器学习课程笔记1

一,先提知识 1,计算机科学基础知识,基本技能以及原理 2,概论统计基础知识 3,线性代数基本知识 二,本课程目标 能够运用机器学习的算法解决实际问题 进行机器学习方面的研究 证明一些定理(比如邮编读取可达到99.9%的正确率) 三,使用工具 MATLAB或octave 四,在线...
  • free356
  • free356
  • 2017-06-17 16:17
  • 193

【机器学习-斯坦福】学习笔记5 - 生成学习算法

生成学习算法 本次课程大纲: 1、 生成学习算法 2、 高斯判别分析(GDA,Gaussian Discriminant Analysis) - 高斯分布(简要) - 对比生成学习算法&判别学习算法(简要) 3、 朴素贝叶斯 4、 Lapla...
  • maverick1990
  • maverick1990
  • 2013-10-28 13:47
  • 4150

斯坦福机器学习网易公开课笔记1

之前在coursera上看了Andrew Ng的机器学习课程,那个课程比较简明,适合对机器学习有一个整体的印象,但是很多细节的内容和推导都忽略了。现在想要了解机器学习更多,所以开始看Andrew Ng在网易公开课上的机器学习课程,并对每一讲整理笔记,以促使自己更好的理解和记忆。   第...
  • zhonglj0314
  • zhonglj0314
  • 2017-02-20 09:57
  • 654

【Stanford机器学习笔记】9-Machine Learning System Design

【Stanford机器学习笔记】9-Machine Learning System Design
  • Neil_Pan
  • Neil_Pan
  • 2016-05-08 22:35
  • 861

机器学习笔记(二)(Draft Version)

摘要 笔记(一)中讨论的情况显示,模型越复杂并不一定error越小。那所以这些error到底来自什么地方呢? 1. bias 2. variance 在具体训练过程中,如果可以诊断error的来源就可以选择合适的方法来improve你的model。 Lecture2.Where doe...
  • yucicheung
  • yucicheung
  • 2017-09-18 15:12
  • 349
    个人资料
    • 访问:155574次
    • 积分:4928
    • 等级:
    • 排名:第6843名
    • 原创:329篇
    • 转载:0篇
    • 译文:0篇
    • 评论:80条
    博客专栏
    最新评论