二叉树的构建及其遍历算法

原创 2017年08月24日 16:18:08

本篇博客参照了兰亭风雨的博客:http://blog.csdn.net/ns_code/article/details/12977901/

概要

二叉树是一种非常重要的数据结构,很多其他数据机构都是基于二叉树的基础演变过来的。二叉树有先、中、后,层次四种遍历方式,因为树的本身就是用递归定义的,因此采用递归的方法实现三种遍历,不仅代码简洁且容易理解,但其开销也比较大,而若采用非递归方法实现先中后3种遍历,则要用栈来模拟实现(递归也是用栈实现的)。下面先简要介绍先中后三种遍历方式的递归实现,再详细介绍先中后三种遍历方式的非递归实现与层次遍历。


递归先序遍历

先序遍历按照“根节点->左子树->右子树”的顺序进行遍历。代码如下:

    void PreorderTraversal(BinaryTree* T){
            if(T == NULL){
                return;
            }
            cout<<T->data<<" ";                                             //访问根节点并输出 
            T->PreorderTraversal(T->lchild);                                //递归前序遍历左子树 
            T->PreorderTraversal(T->rchild);                                //递归前序遍历右子树
        }

递归中序遍历

中序遍历按照“左子树->根节点->右子树”的顺序进行遍历。代码如下:

void InorderTraversal(BinaryTree* T){
            if(T == NULL){
                return;
            }
            T->InorderTraversal(T->lchild);                             //递归中序遍历左子树 
            cout<<T->data<<" ";                                         //访问根节点并输出 
            T->InorderTraversal(T->rchild);                             //递归中序遍历左子树 
        }

递归后序遍历

后序遍历按照“左子树->右子树->根结点”的顺序进行遍历。代码如下:

void PostorderTraversal(BinaryTree* T){
            if(T == NULL){
                return;
            }
            T->PostorderTraversal(T->lchild);                       //递归后序遍历左子树 
            T->PostorderTraversal(T->rchild);                       //递归后序遍历右子树 
            cout<<T->data<<" ";                                     //访问并打印根节点 
        }

非递归先序遍历

非递归的实现思路如下:
对于任一节点P,
1)输出节点P,然后将其入栈,再看P的左孩子是否为空;
2)若P的左孩子不为空,则置P的左孩子为当前节点,重复1)的操作;
3)若P的左孩子为空,则将栈顶节点出栈,但不输出,并将出栈节点的右孩子置为当前节点,看其是否为空;
4)若不为空,则循环至1)操作;
5)如果为空,则继续出栈,但不输出,同时将出栈节点的右孩子置为当前节点,看其是否为空,重复4)和5)操作;
6)直到当前节点P为NULL并且栈空,遍历结束。
代码如下:

void PreorderTraversal2(BinaryTree* T){
            stack<BinaryTree*> stack;                                       //初始化栈 
            BinaryTree* binary_tree_curr = T;                               //保存当前结点 
            //当前结点为空跳出循环 
            while(binary_tree_curr || !stack.empty()){
                cout<<binary_tree_curr->data<<" ";                          //打印当前结点 
                stack.push(binary_tree_curr);                               //当前结点入栈 
                binary_tree_curr = binary_tree_curr->lchild;                //访问左子树 
                //当前结点为空为空,当前结点出栈
                //并把右孩子作为当前结点 
                while(!binary_tree_curr && !stack.empty()){                 
                    binary_tree_curr = stack.top();
                    stack.pop();
                    binary_tree_curr = binary_tree_curr->rchild;
                }
            }
        }

非递归中序遍历

非递归的实现思路如下:
对于任一节点P,
1)若P的左孩子不为空,则将P入栈并将P的左孩子置为当前节点,然后再对当前节点进行相同的处理;
2)若P的左孩子为空,则输出P节点,而后将P的右孩子置为当前节点,看其是否为空;
3)若不为空,则重复1)和2)的操作;
4)若为空,则执行出栈操作,输出栈顶节点,并将出栈的节点的右孩子置为当前节点,看起是否为空,重复3)和4)的操作;
5)直到当前节点P为NULL并且栈为空,则遍历结束。
代码如下:

void InorderTraversal2(BinaryTree* T){
            stack<BinaryTree*> stack;                                   //初始化栈 
            BinaryTree* binary_tree_curr = T;                           //保存当前结点 
            while(binary_tree_curr || !stack.empty()){
                if(binary_tree_curr->lchild){                           //左孩子非空
                    stack.push(binary_tree_curr);                       //当前结点入栈 
                    binary_tree_curr = binary_tree_curr->lchild;        //遍历左子树 
                }else{
                    //左孩子为空,则打印当前结点遍历右子树 
                    cout<<binary_tree_curr->data<<" ";                  
                    binary_tree_curr = binary_tree_curr->rchild;
                    //如果为空,且栈不空,则将栈顶节点出栈,并输出该节点,  
                    //同时将它的右孩子设为当前节点,继续判断,直到当前节点不为空   
                    while(!binary_tree_curr && !stack.empty()){
                        binary_tree_curr = stack.top();
                        cout<<binary_tree_curr->data<<" ";
                        stack.pop();
                        binary_tree_curr = binary_tree_curr->rchild;
                    }
                }
            }
        }

非递归后序遍历

思路如下:
对于任一节点P,
1)先将节点P入栈;
2)若P不存在左孩子和右孩子,或者P存在左孩子或右孩子,但左右孩子已经被输出,则可以直接输出节点P,并将其出栈,将出栈节点P标记为上一个输出的节点,再将此时的栈顶结点设为当前节点;
3)若不满足2)中的条件,则将P的右孩子和左孩子依次入栈,当前节点重新置为栈顶结点,之后重复操作2);
4)直到栈空,遍历结束。
代码如下:

    //非递归后序遍历
        void PostorderTraversal2(BinaryTree* T){
            stack<BinaryTree*> stack;
            BinaryTree* binary_tree_curr = T;                   //当前结点 
            BinaryTree* binary_tree_pre = NULL;                // 上一个结点 
            //先将树的根节点入栈
            stack.push(binary_tree_curr);
            //直到栈空时,结束循环  
            while(!stack.empty()){
                binary_tree_curr = stack.top();              //当前节点置为栈顶节点  
                //如果当前节点没有左右孩子,或者有左孩子或有孩子,但已经被访问输出,  
                //则直接输出该节点,将其出栈,将其设为上一个访问的节点  
                if((binary_tree_curr->lchild == NULL && binary_tree_curr->rchild == NULL) ||
                    (binary_tree_curr != NULL && binary_tree_curr->lchild == binary_tree_pre || 
                                                binary_tree_curr->rchild == binary_tree_pre)){
                    cout<<binary_tree_curr->data<<" ";
                    stack.pop();
                    binary_tree_pre = binary_tree_curr; 
                }else{
                    //如果不满足上面两种情况,则将其右孩子左孩子依次入栈  
                    if(binary_tree_curr->rchild != NULL){
                        stack.push(binary_tree_curr->rchild);
                    }
                    if(binary_tree_curr->lchild != NULL){
                        stack.push(binary_tree_curr->lchild);
                    } 
                }
            }
        }

层次遍历

层次遍历是指按照从从上到下,从左到右的顺序对二叉树的每一层进行遍历。思路如下:
对于任何结点P
1)首先将其入队,判断左右结点是否为空,如不是依次入队(先做孩子后右孩子)
2)把队列头元素出队,打印结点
3)重复1),2)两个步骤直至队列为空
代码如下:

        //层次遍历
        void LevelOrderTraversal(BinaryTree* T){
            queue<BinaryTree*> queue;
            BinaryTree* cur = T;
            //头结点入队 
            queue.push(cur);
            //队列为空时循环结束 
            while(!queue.empty()){
                //队列头元素出队 
                cur = queue.front();
                queue.pop();
                cout<<cur->data<<" ";
                //左孩子不为空入队 
                if(cur->lchild != NULL){
                    queue.push(cur->lchild);
                }
                //右孩子不为空时入队 
                if(cur->rchild != NULL){
                    queue.push(cur->rchild);
                }
            } 
        }

整体代码:

#include <iostream>
#include <stack> 
#include <queue>
using namespace std;

class BinaryTree{
    private:
        char data;
        BinaryTree* lchild;
        BinaryTree* rchild;
    public: 
        //二叉树的初始化函数 
        BinaryTree* Create_BinaryTree(){
            BinaryTree* T = new BinaryTree;
            char ch;
            cin>>ch;
            if(ch == '#'){                                                  //“#”是结束标志 
                T = NULL;
            }else{
                T->data = ch;                                               //对当前结点初始化 
                T->lchild = Create_BinaryTree();                            //递归构造左子树 
                T->rchild = Create_BinaryTree();                            //递归构造右子树 
            }
            return T;
        }

        //递归前序遍历 
        void PreorderTraversal(BinaryTree* T){
            if(T == NULL){
                return;
            }
            cout<<T->data<<" ";                                             //访问根节点并输出 
            T->PreorderTraversal(T->lchild);                                //递归前序遍历左子树 
            T->PreorderTraversal(T->rchild);                                //递归前序遍历右子树
        }

        //非递归前序遍历 
        void PreorderTraversal2(BinaryTree* T){
            stack<BinaryTree*> stack;                                       //初始化栈 
            BinaryTree* binary_tree_curr = T;                               //保存当前结点 
            //当前结点为空跳出循环 
            while(binary_tree_curr || !stack.empty()){
                cout<<binary_tree_curr->data<<" ";                          //打印当前结点 
                stack.push(binary_tree_curr);                               //当前结点入栈 
                binary_tree_curr = binary_tree_curr->lchild;                //访问左子树 
                //当前结点为空为空,当前结点出栈
                //并把右孩子作为当前结点 
                while(!binary_tree_curr && !stack.empty()){                 
                    binary_tree_curr = stack.top();
                    stack.pop();
                    binary_tree_curr = binary_tree_curr->rchild;
                }
            }
        }

        //递归中序遍历 
        void InorderTraversal(BinaryTree* T){
            if(T == NULL){
                return;
            }
            T->InorderTraversal(T->lchild);                             //递归中序遍历左子树 
            cout<<T->data<<" ";                                         //访问根节点并输出 
            T->InorderTraversal(T->rchild);                             //递归中序遍历左子树 
        }

        //非递归中序遍历
        void InorderTraversal2(BinaryTree* T){
            stack<BinaryTree*> stack;                                   //初始化栈 
            BinaryTree* binary_tree_curr = T;                           //保存当前结点 
            while(binary_tree_curr || !stack.empty()){
                if(binary_tree_curr->lchild){                           //左孩子非空
                    stack.push(binary_tree_curr);                       //当前结点入栈 
                    binary_tree_curr = binary_tree_curr->lchild;        //遍历左子树 
                }else{
                    //左孩子为空,则打印当前结点遍历右子树 
                    cout<<binary_tree_curr->data<<" ";                  
                    binary_tree_curr = binary_tree_curr->rchild;
                    //如果为空,且栈不空,则将栈顶节点出栈,并输出该节点,  
                    //同时将它的右孩子设为当前节点,继续判断,直到当前节点不为空   
                    while(!binary_tree_curr && !stack.empty()){
                        binary_tree_curr = stack.top();
                        cout<<binary_tree_curr->data<<" ";
                        stack.pop();
                        binary_tree_curr = binary_tree_curr->rchild;
                    }
                }
            }
        }

        //递归后序遍历 
        void PostorderTraversal(BinaryTree* T){
            if(T == NULL){
                return;
            }
            T->PostorderTraversal(T->lchild);                       //递归后序遍历左子树 
            T->PostorderTraversal(T->rchild);                       //递归后序遍历右子树 
            cout<<T->data<<" ";                                     //访问并打印根节点 
        }

        //非递归后序遍历
        void PostorderTraversal2(BinaryTree* T){
            stack<BinaryTree*> stack;
            BinaryTree* binary_tree_curr = T;                   //当前结点 
            BinaryTree* binary_tree_pre = NULL;                // 上一个结点 
            //先将树的根节点入栈
            stack.push(binary_tree_curr);
            //直到栈空时,结束循环  
            while(!stack.empty()){
                binary_tree_curr = stack.top();              //当前节点置为栈顶节点  
                //如果当前节点没有左右孩子,或者有左孩子或有孩子,但已经被访问输出,  
                //则直接输出该节点,将其出栈,将其设为上一个访问的节点  
                if((binary_tree_curr->lchild == NULL && binary_tree_curr->rchild == NULL) ||
                    (binary_tree_curr != NULL && binary_tree_curr->lchild == binary_tree_pre || 
                                                binary_tree_curr->rchild == binary_tree_pre)){
                    cout<<binary_tree_curr->data<<" ";
                    stack.pop();
                    binary_tree_pre = binary_tree_curr; 
                }else{
                    //如果不满足上面两种情况,则将其右孩子左孩子依次入栈  
                    if(binary_tree_curr->rchild != NULL){
                        stack.push(binary_tree_curr->rchild);
                    }
                    if(binary_tree_curr->lchild != NULL){
                        stack.push(binary_tree_curr->lchild);
                    } 
                }
            }
        }

        //层次遍历
        void LevelOrderTraversal(BinaryTree* T){
            queue<BinaryTree*> queue;
            BinaryTree* cur = T;
            //头结点入队 
            queue.push(cur);
            //队列为空时循环结束 
            while(!queue.empty()){
                //队列头元素出队 
                cur = queue.front();
                queue.pop();
                cout<<cur->data<<" ";
                //左孩子不为空入队 
                if(cur->lchild != NULL){
                    queue.push(cur->lchild);
                }
                //右孩子不为空时入队 
                if(cur->rchild != NULL){
                    queue.push(cur->rchild);
                }
            } 
        }

        //二叉树的高度
        int getBinaryTreeHeight(BinaryTree* T){
            if(T){
                //递归求左子树高度 
                int lheight = T->getBinaryTreeHeight(T->lchild);
                //递归求右子树高度 
                int rheight = T->getBinaryTreeHeight(T->rchild);
                //树的高度等于左右子树高度的较大者加1
                int height = (lheight>rheight)?lheight:rheight;
                height++;
                return height;  
            }
            return 0; 
        }
};

int main()
{
    cout<<"请初始化二叉树:"<<endl;
    BinaryTree* T;
    T = T->Create_BinaryTree();

    cout<<"前序遍历(递归):"<<endl;
    T->PreorderTraversal(T);
    cout<<endl;
    cout<<"前序遍历(非递归):"<<endl;
    T->PreorderTraversal2(T);
    cout<<endl; 

    cout<<"中序遍历(递归):"<<endl;
    T->InorderTraversal(T);
    cout<<endl;
    cout<<"中序遍历(非递归):"<<endl;
    T->InorderTraversal2(T);
    cout<<endl; 

    cout<<"后序遍历(递归):"<<endl;
    T->PostorderTraversal(T);
    cout<<endl;
    cout<<"后序遍历(非递归):"<<endl;
    T->PostorderTraversal2(T);
    cout<<endl; 

    cout<<"层次遍历:"<<endl;
    T->LevelOrderTraversal(T);
    cout<<endl; 

    cout<<"二叉树高度为:" <<endl;
    cout<<T->getBinaryTreeHeight(T)<<endl;

    return 0;
 } 

下面的程序结果都是基于如下的二叉树进行的:
这里写图片描述
截图:
这里写图片描述

版权声明:本文为博主原创文章,未经博主允许不得转载。若需转载,请注明http://blog.csdn.net/qq_30091945 举报

相关文章推荐

概念堆是一个用数组表示的完全二叉树,并满足以下两个特性: 1)父节点的键值总是大于或等于(小于等于)其子树上的任意结点 2)每个结点的左子树和右子树都是个堆。 如果父节点的键值总是大于等于任何一...

local function definitions are illegal解决办法

原文出处http://wenku.baidu.com/view/1f3eb740c850ad02de8041ac.html 编译错误:local function definitions are i...

我是如何成为一名python大咖的?

人生苦短,都说必须python,那么我分享下我是如何从小白成为Python资深开发者的吧。2014年我大学刚毕业..

数组实现根据二叉树的先序遍历和中序遍历构造二叉树

根据二叉树的先序遍历和中序遍历构造二叉树是非常经典的一道算法题目,但是在网上找到的资料绝大多数都是使用链接方式构造二叉树,感觉这样比较繁琐,因此自己写了一个数组实现的程序,当然,程序不算很完善,还望朋...

平衡二叉树

由于平衡二叉树的前提是二叉搜索树,故关于二叉搜索树的内容请移步如下网址:http://blog.csdn.net/qq_30091945/article/details/77720865概念平衡因子:...

2014年计算机联考真题——带权路径长度之和

思路如下: 利用层次遍历的思路,记录每层的层数level,对于该层的每个叶节点的带权路径长度 = data*(level-1) 算法如下: //求叶子节点带权路径长度之和 ...

根据二叉树的前序遍历和中序遍历,重构出二叉树

题目:这道题目是一道面试题,先序遍历和中序遍历以数组的形式给出,要求我们根据这两个条件重构出二叉树。 下图是一棵二叉树 // 6 // / \...

并查集

并查集并查集是一种树形结构,又叫“不相交集合”,保持了一组不相交的动态集合,每个集合通过一个代表来识别,代表即集合中的某个成员,通常选择根做这个代表。初始化用数组来建立一个并查集,数组下标代表元素,下...

二叉搜索树

关于二叉树的基本操作请转到我的另一片博客: http://blog.csdn.net/qq_30091945/article/details/77531651概念Binary Search Tree...

根据先序序列与中序序列构建二叉树

算法如下: 1)先在先序序列中找到根结点, 2)在中序序列中找到根结点位置,(可以将二叉树分为左子树和右子树) 3)用同样的办法构造左子树 4)用同样的办法构造右子树。//根据先序序列与中序序...

从大到小输出二叉搜索树中键值不小于K的关键字

概要这是王道数据结构复习资料上的一道题。该书给出了递归算法,但是解析中对于非递归算法说使用非递归中序遍历的思路进行解答,这明显有错误。根据 二叉搜索树的性质可知,二叉搜索树的中序遍历是从小到大的序列,...
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)