二叉树的构建及其遍历算法

原创 2017年08月24日 16:18:08

本篇博客参照了兰亭风雨的博客:http://blog.csdn.net/ns_code/article/details/12977901/

概要

二叉树是一种非常重要的数据结构,很多其他数据机构都是基于二叉树的基础演变过来的。二叉树有先、中、后,层次四种遍历方式,因为树的本身就是用递归定义的,因此采用递归的方法实现三种遍历,不仅代码简洁且容易理解,但其开销也比较大,而若采用非递归方法实现先中后3种遍历,则要用栈来模拟实现(递归也是用栈实现的)。下面先简要介绍先中后三种遍历方式的递归实现,再详细介绍先中后三种遍历方式的非递归实现与层次遍历。


递归先序遍历

先序遍历按照“根节点->左子树->右子树”的顺序进行遍历。代码如下:

    void PreorderTraversal(BinaryTree* T){
            if(T == NULL){
                return;
            }
            cout<<T->data<<" ";                                             //访问根节点并输出 
            T->PreorderTraversal(T->lchild);                                //递归前序遍历左子树 
            T->PreorderTraversal(T->rchild);                                //递归前序遍历右子树
        }

递归中序遍历

中序遍历按照“左子树->根节点->右子树”的顺序进行遍历。代码如下:

void InorderTraversal(BinaryTree* T){
            if(T == NULL){
                return;
            }
            T->InorderTraversal(T->lchild);                             //递归中序遍历左子树 
            cout<<T->data<<" ";                                         //访问根节点并输出 
            T->InorderTraversal(T->rchild);                             //递归中序遍历左子树 
        }

递归后序遍历

后序遍历按照“左子树->右子树->根结点”的顺序进行遍历。代码如下:

void PostorderTraversal(BinaryTree* T){
            if(T == NULL){
                return;
            }
            T->PostorderTraversal(T->lchild);                       //递归后序遍历左子树 
            T->PostorderTraversal(T->rchild);                       //递归后序遍历右子树 
            cout<<T->data<<" ";                                     //访问并打印根节点 
        }

非递归先序遍历

非递归的实现思路如下:
对于任一节点P,
1)输出节点P,然后将其入栈,再看P的左孩子是否为空;
2)若P的左孩子不为空,则置P的左孩子为当前节点,重复1)的操作;
3)若P的左孩子为空,则将栈顶节点出栈,但不输出,并将出栈节点的右孩子置为当前节点,看其是否为空;
4)若不为空,则循环至1)操作;
5)如果为空,则继续出栈,但不输出,同时将出栈节点的右孩子置为当前节点,看其是否为空,重复4)和5)操作;
6)直到当前节点P为NULL并且栈空,遍历结束。
代码如下:

void PreorderTraversal2(BinaryTree* T){
            stack<BinaryTree*> stack;                                       //初始化栈 
            BinaryTree* binary_tree_curr = T;                               //保存当前结点 
            //当前结点为空跳出循环 
            while(binary_tree_curr || !stack.empty()){
                cout<<binary_tree_curr->data<<" ";                          //打印当前结点 
                stack.push(binary_tree_curr);                               //当前结点入栈 
                binary_tree_curr = binary_tree_curr->lchild;                //访问左子树 
                //当前结点为空为空,当前结点出栈
                //并把右孩子作为当前结点 
                while(!binary_tree_curr && !stack.empty()){                 
                    binary_tree_curr = stack.top();
                    stack.pop();
                    binary_tree_curr = binary_tree_curr->rchild;
                }
            }
        }

非递归中序遍历

非递归的实现思路如下:
对于任一节点P,
1)若P的左孩子不为空,则将P入栈并将P的左孩子置为当前节点,然后再对当前节点进行相同的处理;
2)若P的左孩子为空,则输出P节点,而后将P的右孩子置为当前节点,看其是否为空;
3)若不为空,则重复1)和2)的操作;
4)若为空,则执行出栈操作,输出栈顶节点,并将出栈的节点的右孩子置为当前节点,看起是否为空,重复3)和4)的操作;
5)直到当前节点P为NULL并且栈为空,则遍历结束。
代码如下:

void InorderTraversal2(BinaryTree* T){
            stack<BinaryTree*> stack;                                   //初始化栈 
            BinaryTree* binary_tree_curr = T;                           //保存当前结点 
            while(binary_tree_curr || !stack.empty()){
                if(binary_tree_curr->lchild){                           //左孩子非空
                    stack.push(binary_tree_curr);                       //当前结点入栈 
                    binary_tree_curr = binary_tree_curr->lchild;        //遍历左子树 
                }else{
                    //左孩子为空,则打印当前结点遍历右子树 
                    cout<<binary_tree_curr->data<<" ";                  
                    binary_tree_curr = binary_tree_curr->rchild;
                    //如果为空,且栈不空,则将栈顶节点出栈,并输出该节点,  
                    //同时将它的右孩子设为当前节点,继续判断,直到当前节点不为空   
                    while(!binary_tree_curr && !stack.empty()){
                        binary_tree_curr = stack.top();
                        cout<<binary_tree_curr->data<<" ";
                        stack.pop();
                        binary_tree_curr = binary_tree_curr->rchild;
                    }
                }
            }
        }

非递归后序遍历

思路如下:
对于任一节点P,
1)先将节点P入栈;
2)若P不存在左孩子和右孩子,或者P存在左孩子或右孩子,但左右孩子已经被输出,则可以直接输出节点P,并将其出栈,将出栈节点P标记为上一个输出的节点,再将此时的栈顶结点设为当前节点;
3)若不满足2)中的条件,则将P的右孩子和左孩子依次入栈,当前节点重新置为栈顶结点,之后重复操作2);
4)直到栈空,遍历结束。
代码如下:

    //非递归后序遍历
        void PostorderTraversal2(BinaryTree* T){
            stack<BinaryTree*> stack;
            BinaryTree* binary_tree_curr = T;                   //当前结点 
            BinaryTree* binary_tree_pre = NULL;                // 上一个结点 
            //先将树的根节点入栈
            stack.push(binary_tree_curr);
            //直到栈空时,结束循环  
            while(!stack.empty()){
                binary_tree_curr = stack.top();              //当前节点置为栈顶节点  
                //如果当前节点没有左右孩子,或者有左孩子或有孩子,但已经被访问输出,  
                //则直接输出该节点,将其出栈,将其设为上一个访问的节点  
                if((binary_tree_curr->lchild == NULL && binary_tree_curr->rchild == NULL) ||
                    (binary_tree_curr != NULL && binary_tree_curr->lchild == binary_tree_pre || 
                                                binary_tree_curr->rchild == binary_tree_pre)){
                    cout<<binary_tree_curr->data<<" ";
                    stack.pop();
                    binary_tree_pre = binary_tree_curr; 
                }else{
                    //如果不满足上面两种情况,则将其右孩子左孩子依次入栈  
                    if(binary_tree_curr->rchild != NULL){
                        stack.push(binary_tree_curr->rchild);
                    }
                    if(binary_tree_curr->lchild != NULL){
                        stack.push(binary_tree_curr->lchild);
                    } 
                }
            }
        }

层次遍历

层次遍历是指按照从从上到下,从左到右的顺序对二叉树的每一层进行遍历。思路如下:
对于任何结点P
1)首先将其入队,判断左右结点是否为空,如不是依次入队(先做孩子后右孩子)
2)把队列头元素出队,打印结点
3)重复1),2)两个步骤直至队列为空
代码如下:

        //层次遍历
        void LevelOrderTraversal(BinaryTree* T){
            queue<BinaryTree*> queue;
            BinaryTree* cur = T;
            //头结点入队 
            queue.push(cur);
            //队列为空时循环结束 
            while(!queue.empty()){
                //队列头元素出队 
                cur = queue.front();
                queue.pop();
                cout<<cur->data<<" ";
                //左孩子不为空入队 
                if(cur->lchild != NULL){
                    queue.push(cur->lchild);
                }
                //右孩子不为空时入队 
                if(cur->rchild != NULL){
                    queue.push(cur->rchild);
                }
            } 
        }

整体代码:

#include <iostream>
#include <stack> 
#include <queue>
using namespace std;

class BinaryTree{
    private:
        char data;
        BinaryTree* lchild;
        BinaryTree* rchild;
    public: 
        //二叉树的初始化函数 
        BinaryTree* Create_BinaryTree(){
            BinaryTree* T = new BinaryTree;
            char ch;
            cin>>ch;
            if(ch == '#'){                                                  //“#”是结束标志 
                T = NULL;
            }else{
                T->data = ch;                                               //对当前结点初始化 
                T->lchild = Create_BinaryTree();                            //递归构造左子树 
                T->rchild = Create_BinaryTree();                            //递归构造右子树 
            }
            return T;
        }

        //递归前序遍历 
        void PreorderTraversal(BinaryTree* T){
            if(T == NULL){
                return;
            }
            cout<<T->data<<" ";                                             //访问根节点并输出 
            T->PreorderTraversal(T->lchild);                                //递归前序遍历左子树 
            T->PreorderTraversal(T->rchild);                                //递归前序遍历右子树
        }

        //非递归前序遍历 
        void PreorderTraversal2(BinaryTree* T){
            stack<BinaryTree*> stack;                                       //初始化栈 
            BinaryTree* binary_tree_curr = T;                               //保存当前结点 
            //当前结点为空跳出循环 
            while(binary_tree_curr || !stack.empty()){
                cout<<binary_tree_curr->data<<" ";                          //打印当前结点 
                stack.push(binary_tree_curr);                               //当前结点入栈 
                binary_tree_curr = binary_tree_curr->lchild;                //访问左子树 
                //当前结点为空为空,当前结点出栈
                //并把右孩子作为当前结点 
                while(!binary_tree_curr && !stack.empty()){                 
                    binary_tree_curr = stack.top();
                    stack.pop();
                    binary_tree_curr = binary_tree_curr->rchild;
                }
            }
        }

        //递归中序遍历 
        void InorderTraversal(BinaryTree* T){
            if(T == NULL){
                return;
            }
            T->InorderTraversal(T->lchild);                             //递归中序遍历左子树 
            cout<<T->data<<" ";                                         //访问根节点并输出 
            T->InorderTraversal(T->rchild);                             //递归中序遍历左子树 
        }

        //非递归中序遍历
        void InorderTraversal2(BinaryTree* T){
            stack<BinaryTree*> stack;                                   //初始化栈 
            BinaryTree* binary_tree_curr = T;                           //保存当前结点 
            while(binary_tree_curr || !stack.empty()){
                if(binary_tree_curr->lchild){                           //左孩子非空
                    stack.push(binary_tree_curr);                       //当前结点入栈 
                    binary_tree_curr = binary_tree_curr->lchild;        //遍历左子树 
                }else{
                    //左孩子为空,则打印当前结点遍历右子树 
                    cout<<binary_tree_curr->data<<" ";                  
                    binary_tree_curr = binary_tree_curr->rchild;
                    //如果为空,且栈不空,则将栈顶节点出栈,并输出该节点,  
                    //同时将它的右孩子设为当前节点,继续判断,直到当前节点不为空   
                    while(!binary_tree_curr && !stack.empty()){
                        binary_tree_curr = stack.top();
                        cout<<binary_tree_curr->data<<" ";
                        stack.pop();
                        binary_tree_curr = binary_tree_curr->rchild;
                    }
                }
            }
        }

        //递归后序遍历 
        void PostorderTraversal(BinaryTree* T){
            if(T == NULL){
                return;
            }
            T->PostorderTraversal(T->lchild);                       //递归后序遍历左子树 
            T->PostorderTraversal(T->rchild);                       //递归后序遍历右子树 
            cout<<T->data<<" ";                                     //访问并打印根节点 
        }

        //非递归后序遍历
        void PostorderTraversal2(BinaryTree* T){
            stack<BinaryTree*> stack;
            BinaryTree* binary_tree_curr = T;                   //当前结点 
            BinaryTree* binary_tree_pre = NULL;                // 上一个结点 
            //先将树的根节点入栈
            stack.push(binary_tree_curr);
            //直到栈空时,结束循环  
            while(!stack.empty()){
                binary_tree_curr = stack.top();              //当前节点置为栈顶节点  
                //如果当前节点没有左右孩子,或者有左孩子或有孩子,但已经被访问输出,  
                //则直接输出该节点,将其出栈,将其设为上一个访问的节点  
                if((binary_tree_curr->lchild == NULL && binary_tree_curr->rchild == NULL) ||
                    (binary_tree_curr != NULL && binary_tree_curr->lchild == binary_tree_pre || 
                                                binary_tree_curr->rchild == binary_tree_pre)){
                    cout<<binary_tree_curr->data<<" ";
                    stack.pop();
                    binary_tree_pre = binary_tree_curr; 
                }else{
                    //如果不满足上面两种情况,则将其右孩子左孩子依次入栈  
                    if(binary_tree_curr->rchild != NULL){
                        stack.push(binary_tree_curr->rchild);
                    }
                    if(binary_tree_curr->lchild != NULL){
                        stack.push(binary_tree_curr->lchild);
                    } 
                }
            }
        }

        //层次遍历
        void LevelOrderTraversal(BinaryTree* T){
            queue<BinaryTree*> queue;
            BinaryTree* cur = T;
            //头结点入队 
            queue.push(cur);
            //队列为空时循环结束 
            while(!queue.empty()){
                //队列头元素出队 
                cur = queue.front();
                queue.pop();
                cout<<cur->data<<" ";
                //左孩子不为空入队 
                if(cur->lchild != NULL){
                    queue.push(cur->lchild);
                }
                //右孩子不为空时入队 
                if(cur->rchild != NULL){
                    queue.push(cur->rchild);
                }
            } 
        }

        //二叉树的高度
        int getBinaryTreeHeight(BinaryTree* T){
            if(T){
                //递归求左子树高度 
                int lheight = T->getBinaryTreeHeight(T->lchild);
                //递归求右子树高度 
                int rheight = T->getBinaryTreeHeight(T->rchild);
                //树的高度等于左右子树高度的较大者加1
                int height = (lheight>rheight)?lheight:rheight;
                height++;
                return height;  
            }
            return 0; 
        }
};

int main()
{
    cout<<"请初始化二叉树:"<<endl;
    BinaryTree* T;
    T = T->Create_BinaryTree();

    cout<<"前序遍历(递归):"<<endl;
    T->PreorderTraversal(T);
    cout<<endl;
    cout<<"前序遍历(非递归):"<<endl;
    T->PreorderTraversal2(T);
    cout<<endl; 

    cout<<"中序遍历(递归):"<<endl;
    T->InorderTraversal(T);
    cout<<endl;
    cout<<"中序遍历(非递归):"<<endl;
    T->InorderTraversal2(T);
    cout<<endl; 

    cout<<"后序遍历(递归):"<<endl;
    T->PostorderTraversal(T);
    cout<<endl;
    cout<<"后序遍历(非递归):"<<endl;
    T->PostorderTraversal2(T);
    cout<<endl; 

    cout<<"层次遍历:"<<endl;
    T->LevelOrderTraversal(T);
    cout<<endl; 

    cout<<"二叉树高度为:" <<endl;
    cout<<T->getBinaryTreeHeight(T)<<endl;

    return 0;
 } 

下面的程序结果都是基于如下的二叉树进行的:
这里写图片描述
截图:
这里写图片描述

版权声明:本文为博主原创文章,若需转载,请注明http://blog.csdn.net/qq_30091945

相关文章推荐

二叉树的遍历算法

  • 2015年01月11日 11:42
  • 1KB
  • 下载

二叉树的遍历算法与相关设计

  • 2010年04月16日 18:50
  • 215KB
  • 下载

中缀表达式构建二叉树以及递归非递归遍历算法

最近准备找实习,发现数据结构也忘得差不多了,重新敲敲代码,回忆回忆,同时也算是一种笔记! 内容: 输入为以‘#’结束的数学表达式,将表达式在转换为后缀的同时构建表达式二叉树,然后实现树的递归和非递归的...

二叉树的各种遍历的递归算法

  • 2012年07月29日 22:03
  • 57KB
  • 下载

二叉树 各种遍历算法 C#实现

  • 2017年07月22日 16:22
  • 38KB
  • 下载

二叉树的构建和三种遍历算法 (递归实现)

#include "stdio.h" #include "malloc.h" #define TRUE 1 #define FALSE 0 #define OK 1 #define ERROR 0...

二叉树的存储结构和遍历算法

  • 2012年10月08日 14:48
  • 262KB
  • 下载

图解二叉树非递归版的中序遍历算法

你会学到什么 讨论的问题是什么 这个问题相关的概念和理论 非递归版中序遍历算法 代码思考 算法技巧 实现代码 快照 评价算法 总结 欢迎关注算法思考与应用公众号 你会学到什么?树的递归遍历算法很容易理...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:二叉树的构建及其遍历算法
举报原因:
原因补充:

(最多只允许输入30个字)