并查集

原创 2017年08月29日 15:50:07

本篇博客参照了如下博客内容:
http://www.cnblogs.com/horizonice/p/3658176.html

并查集

并查集是一种树形结构,又叫“不相交集合”,保持了一组不相交的动态集合,每个集合通过一个代表来识别,代表即集合中的某个成员,通常选择根做这个代表。


初始化

用数组来建立一个并查集,数组下标代表元素,下标对应的值代表父节点,全部初始化为-1,根节点为一个集合的元素个数,数组的长度为并查集的初始连通分量的个数。并查集要求各集合是不相交的,因此要求x没有在其他集合中出现过。算法如下:

//构造函数 
UF(int size){
    this->count = size;
    array = new int[size];
    for(int i = 0 ; i < size ; i++){
        this->array[i] = -1;
    }
}

查找操作

返回能代表x所在集合的节点,通常返回x所在集合的根节点。这里的查找操作通常采用路径压缩的办法,即在查找过程中组不减小树的高度,把元素逐步指向一开始的根节点。这样下次再找根节点的时间复杂度会变成o(1)。如下图所示
这里写图片描述
算法如下:

//查找操作,路径压缩
int Find(int x){
    if(this->array[x] < 0){
        return x;
    }else{
    //首先查找x的父节点array[x],然后把根变成array[x],之后再返回根 
        return this->array[x] = Find(this->array[x]);
    }
}

并操作

将包含x,y的动态集合合并为一个新的集合。合并两个集合的关键是找到两个集合的根节点,如果两个根节点相同则不用合并;如果不同,则需要合并。
这里对并操作有两种优化:根节点存树高的相反数或者根节点存集合的个数的相反数,这两种方法统称按秩归并。通常选用第二种方法。
归并过程如下图:
这里写图片描述
算法如下:

//并操作,跟结点存储集合元素个数的负数
//通过对根结点的比较 
void Uion(int root1, int root2){
    root1 = this->Find(root1);
    root2 = this->Find(root2);
    if(root1 == root2){
        return;
    }else if(this->array[root1] < this->array[root2]){
        //root1所代表的集合的个数大于root2所代表集合的个数
        //因为为存放的是元素个数的负数 
        this->array[root1] += this->array[root2];
        this->array[root2] = root1;
        count--;
        }else{
            this->array[root2] += this->array[root1];
            this->array[root1] = root2;
            count--;
        }
    }
}

全部代码如下:

#include <iostream>
#include <string.h>
using namespace std;

class UF{
    private:
        int* array;
        //并查集中的联通分量的个数,初始化为数组大小 
        int count;
    public:
        //构造函数 
        UF(int size){
            this->count = size;
            array = new int[size];
            for(int i = 0 ; i < size ; i++){
                this->array[i] = -1;
            }
        }

        //查找操作,路径压缩
        int Find(int x){
            if(this->array[x] < 0){
                return x;
            }else{
                //首先查找x的父节点array[x],然后把根节点变成array[x],之后再返回根 
                return this->array[x] = Find(this->array[x]);
            }
        }

        //并操作,跟结点存储集合元素个数的负数
        //通过对根结点的比较 
        void Uion(int root1, int root2){
            root1 = this->Find(root1);
            root2 = this->Find(root2);
            if(root1 == root2){
                return;
            }else if(this->array[root1] < this->array[root2]){
                //root1所代表的集合的个数大于root2所代表集合的个数
                //因为为存放的是元素个数的负数 
                this->array[root1] += this->array[root2];
                this->array[root2] = root1;
                count--;
            }else{
                this->array[root2] += this->array[root1];
                this->array[root1] = root2;
                count--;
            }
        }

        //判断两个集合是否属于一个集合 
        bool check(int root1,int root2){
            root1 = this->Find(root1);
            root2 = this->Find(root2);
            return root1 == root2;
        }

        //放回连通分量个数 
        int getCount(){
            return this->count;
        }
};
版权声明:本文为博主原创文章,若需转载,请注明http://blog.csdn.net/qq_30091945

相关文章推荐

概念堆是一个用数组表示的完全二叉树,并满足以下两个特性: 1)父节点的键值总是大于或等于(小于等于)其子树上的任意结点 2)每个结点的左子树和右子树都是个堆。 如果父节点的键值总是大于等于任何一...

拓扑排序

概述拓扑排序:如果图中从v到w有有一条有向路径,则v一定要排在w之前。满足此条件的顶点序列称为一个拓扑序。获得拓扑序的过程就是拓扑排序。有向无环图:一个有向图中不存在环,则称为有向无环图,简称DAG(...

并查集代码

  • 2015年12月12日 20:18
  • 1KB
  • 下载

ACM并查集讲解的深化和扩展

  • 2016年07月01日 17:27
  • 1.58MB
  • 下载

[BZOJ2303][APIO2011]方格染色 异或+并查集

这题首先要推式子: 题目条件即为A(i-1,j-1) xor A(i-1,j) xor A(i,j-1) xor A (i,j)=1. 又有A(i-1,j-2) xor A(i-1,j-1) x...
  • DOFYPXY
  • DOFYPXY
  • 2017年04月25日 09:02
  • 226

并查集初步(黄劲松).ppt

  • 2015年04月01日 15:45
  • 424KB
  • 下载

并查集.ppt

  • 2015年08月11日 20:50
  • 833KB
  • 下载

HDU 1272小希的迷宫(简单并查集)

小希的迷宫 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Su...
  • opm777
  • opm777
  • 2013年08月24日 20:43
  • 840

并查集的讲解

  • 2014年03月08日 19:33
  • 256KB
  • 下载

并查集讲义

  • 2014年08月08日 18:14
  • 556KB
  • 下载
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:并查集
举报原因:
原因补充:

(最多只允许输入30个字)