并查集

原创 2017年08月29日 15:50:07

本篇博客参照了如下博客内容:
http://www.cnblogs.com/horizonice/p/3658176.html

并查集

并查集是一种树形结构,又叫“不相交集合”,保持了一组不相交的动态集合,每个集合通过一个代表来识别,代表即集合中的某个成员,通常选择根做这个代表。


初始化

用数组来建立一个并查集,数组下标代表元素,下标对应的值代表父节点,全部初始化为-1,根节点为一个集合的元素个数,数组的长度为并查集的初始连通分量的个数。并查集要求各集合是不相交的,因此要求x没有在其他集合中出现过。算法如下:

//构造函数 
UF(int size){
    this->count = size;
    array = new int[size];
    for(int i = 0 ; i < size ; i++){
        this->array[i] = -1;
    }
}

查找操作

返回能代表x所在集合的节点,通常返回x所在集合的根节点。这里的查找操作通常采用路径压缩的办法,即在查找过程中组不减小树的高度,把元素逐步指向一开始的根节点。这样下次再找根节点的时间复杂度会变成o(1)。如下图所示
这里写图片描述
算法如下:

//查找操作,路径压缩
int Find(int x){
    if(this->array[x] < 0){
        return x;
    }else{
    //首先查找x的父节点array[x],然后把根变成array[x],之后再返回根 
        return this->array[x] = Find(this->array[x]);
    }
}

并操作

将包含x,y的动态集合合并为一个新的集合。合并两个集合的关键是找到两个集合的根节点,如果两个根节点相同则不用合并;如果不同,则需要合并。
这里对并操作有两种优化:根节点存树高的相反数或者根节点存集合的个数的相反数,这两种方法统称按秩归并。通常选用第二种方法。
归并过程如下图:
这里写图片描述
算法如下:

//并操作,跟结点存储集合元素个数的负数
//通过对根结点的比较 
void Uion(int root1, int root2){
    root1 = this->Find(root1);
    root2 = this->Find(root2);
    if(root1 == root2){
        return;
    }else if(this->array[root1] < this->array[root2]){
        //root1所代表的集合的个数大于root2所代表集合的个数
        //因为为存放的是元素个数的负数 
        this->array[root1] += this->array[root2];
        this->array[root2] = root1;
        count--;
        }else{
            this->array[root2] += this->array[root1];
            this->array[root1] = root2;
            count--;
        }
    }
}

全部代码如下:

#include <iostream>
#include <string.h>
using namespace std;

class UF{
    private:
        int* array;
        //并查集中的联通分量的个数,初始化为数组大小 
        int count;
    public:
        //构造函数 
        UF(int size){
            this->count = size;
            array = new int[size];
            for(int i = 0 ; i < size ; i++){
                this->array[i] = -1;
            }
        }

        //查找操作,路径压缩
        int Find(int x){
            if(this->array[x] < 0){
                return x;
            }else{
                //首先查找x的父节点array[x],然后把根节点变成array[x],之后再返回根 
                return this->array[x] = Find(this->array[x]);
            }
        }

        //并操作,跟结点存储集合元素个数的负数
        //通过对根结点的比较 
        void Uion(int root1, int root2){
            root1 = this->Find(root1);
            root2 = this->Find(root2);
            if(root1 == root2){
                return;
            }else if(this->array[root1] < this->array[root2]){
                //root1所代表的集合的个数大于root2所代表集合的个数
                //因为为存放的是元素个数的负数 
                this->array[root1] += this->array[root2];
                this->array[root2] = root1;
                count--;
            }else{
                this->array[root2] += this->array[root1];
                this->array[root1] = root2;
                count--;
            }
        }

        //判断两个集合是否属于一个集合 
        bool check(int root1,int root2){
            root1 = this->Find(root1);
            root2 = this->Find(root2);
            return root1 == root2;
        }

        //放回连通分量个数 
        int getCount(){
            return this->count;
        }
};
版权声明:本文为博主原创文章,未经博主允许不得转载。若需转载,请注明http://blog.csdn.net/qq_30091945 举报

相关文章推荐

概念堆是一个用数组表示的完全二叉树,并满足以下两个特性: 1)父节点的键值总是大于或等于(小于等于)其子树上的任意结点 2)每个结点的左子树和右子树都是个堆。 如果父节点的键值总是大于等于任何一...

local function definitions are illegal解决办法

原文出处http://wenku.baidu.com/view/1f3eb740c850ad02de8041ac.html 编译错误:local function definitions are i...

我是如何成为一名python大咖的?

人生苦短,都说必须python,那么我分享下我是如何从小白成为Python资深开发者的吧。2014年我大学刚毕业..

数组实现根据二叉树的先序遍历和中序遍历构造二叉树

根据二叉树的先序遍历和中序遍历构造二叉树是非常经典的一道算法题目,但是在网上找到的资料绝大多数都是使用链接方式构造二叉树,感觉这样比较繁琐,因此自己写了一个数组实现的程序,当然,程序不算很完善,还望朋...

平衡二叉树

由于平衡二叉树的前提是二叉搜索树,故关于二叉搜索树的内容请移步如下网址:http://blog.csdn.net/qq_30091945/article/details/77720865概念平衡因子:...

2014年计算机联考真题——带权路径长度之和

思路如下: 利用层次遍历的思路,记录每层的层数level,对于该层的每个叶节点的带权路径长度 = data*(level-1) 算法如下: //求叶子节点带权路径长度之和 ...

根据二叉树的前序遍历和中序遍历,重构出二叉树

题目:这道题目是一道面试题,先序遍历和中序遍历以数组的形式给出,要求我们根据这两个条件重构出二叉树。 下图是一棵二叉树 // 6 // / \...

二叉树的构建及其遍历算法

概要二叉树是一种非常重要的数据结构,很多其他数据机构都是基于二叉树的基础演变过来的。二叉树有先、中、后,层次四种遍历方式,因为树的本身就是用递归定义的,因此采用递归的方法实现三种遍历,不仅代码简洁且容...

二叉搜索树

关于二叉树的基本操作请转到我的另一片博客: http://blog.csdn.net/qq_30091945/article/details/77531651概念Binary Search Tree...

根据先序序列与中序序列构建二叉树

算法如下: 1)先在先序序列中找到根结点, 2)在中序序列中找到根结点位置,(可以将二叉树分为左子树和右子树) 3)用同样的办法构造左子树 4)用同样的办法构造右子树。//根据先序序列与中序序...

从大到小输出二叉搜索树中键值不小于K的关键字

概要这是王道数据结构复习资料上的一道题。该书给出了递归算法,但是解析中对于非递归算法说使用非递归中序遍历的思路进行解答,这明显有错误。根据 二叉搜索树的性质可知,二叉搜索树的中序遍历是从小到大的序列,...
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)