关闭

[置顶] 并查集

标签: 数据结构并查集
485人阅读 评论(0) 收藏 举报
分类:

本篇博客参照了如下博客内容:
http://www.cnblogs.com/horizonice/p/3658176.html

并查集

并查集是一种树形结构,又叫“不相交集合”,保持了一组不相交的动态集合,每个集合通过一个代表来识别,代表即集合中的某个成员,通常选择根做这个代表。


初始化

用数组来建立一个并查集,数组下标代表元素,下标对应的值代表父节点,全部初始化为-1,根节点为一个集合的元素个数,数组的长度为并查集的初始连通分量的个数。并查集要求各集合是不相交的,因此要求x没有在其他集合中出现过。算法如下:

//构造函数 
UF(int size){
    this->count = size;
    array = new int[size];
    for(int i = 0 ; i < size ; i++){
        this->array[i] = -1;
    }
}

查找操作

返回能代表x所在集合的节点,通常返回x所在集合的根节点。这里的查找操作通常采用路径压缩的办法,即在查找过程中组不减小树的高度,把元素逐步指向一开始的根节点。这样下次再找根节点的时间复杂度会变成o(1)。如下图所示
这里写图片描述
算法如下:

//查找操作,路径压缩
int Find(int x){
    if(this->array[x] < 0){
        return x;
    }else{
    //首先查找x的父节点array[x],然后把根变成array[x],之后再返回根 
        return this->array[x] = Find(this->array[x]);
    }
}

并操作

将包含x,y的动态集合合并为一个新的集合。合并两个集合的关键是找到两个集合的根节点,如果两个根节点相同则不用合并;如果不同,则需要合并。
这里对并操作有两种优化:根节点存树高的相反数或者根节点存集合的个数的相反数,这两种方法统称按秩归并。通常选用第二种方法。
归并过程如下图:
这里写图片描述
算法如下:

//并操作,跟结点存储集合元素个数的负数
//通过对根结点的比较 
void Uion(int root1, int root2){
    root1 = this->Find(root1);
    root2 = this->Find(root2);
    if(root1 == root2){
        return;
    }else if(this->array[root1] < this->array[root2]){
        //root1所代表的集合的个数大于root2所代表集合的个数
        //因为为存放的是元素个数的负数 
        this->array[root1] += this->array[root2];
        this->array[root2] = root1;
        count--;
        }else{
            this->array[root2] += this->array[root1];
            this->array[root1] = root2;
            count--;
        }
    }
}

全部代码如下:

#include <iostream>
#include <string.h>
using namespace std;

class UF{
    private:
        int* array;
        //并查集中的联通分量的个数,初始化为数组大小 
        int count;
    public:
        //构造函数 
        UF(int size){
            this->count = size;
            array = new int[size];
            for(int i = 0 ; i < size ; i++){
                this->array[i] = -1;
            }
        }

        //查找操作,路径压缩
        int Find(int x){
            if(this->array[x] < 0){
                return x;
            }else{
                //首先查找x的父节点array[x],然后把根节点变成array[x],之后再返回根 
                return this->array[x] = Find(this->array[x]);
            }
        }

        //并操作,跟结点存储集合元素个数的负数
        //通过对根结点的比较 
        void Uion(int root1, int root2){
            root1 = this->Find(root1);
            root2 = this->Find(root2);
            if(root1 == root2){
                return;
            }else if(this->array[root1] < this->array[root2]){
                //root1所代表的集合的个数大于root2所代表集合的个数
                //因为为存放的是元素个数的负数 
                this->array[root1] += this->array[root2];
                this->array[root2] = root1;
                count--;
            }else{
                this->array[root2] += this->array[root1];
                this->array[root1] = root2;
                count--;
            }
        }

        //判断两个集合是否属于一个集合 
        bool check(int root1,int root2){
            root1 = this->Find(root1);
            root2 = this->Find(root2);
            return root1 == root2;
        }

        //放回连通分量个数 
        int getCount(){
            return this->count;
        }
};
2
0
查看评论

使用STL实现并查集

我以最入门的并查集水题——宗教信仰为例,来演示使用STL里的multimap(多重映照容器)模拟并查集数据结构(并查集应该也可以用其他STL实现,这里我仅以multimap为例)。 Multimap和map类似,不过可以插入重复键值,都要包含头文件,因为multimap可以插入重复键值,所以其搜索...
  • lhrsdl
  • lhrsdl
  • 2014-07-25 15:43
  • 1679

【并查集专题】【HDU】

How Many Tables Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 14542...
  • zy691357966
  • zy691357966
  • 2014-11-29 18:34
  • 2261

并查集详解 ——图文解说,简单易懂(转)

并查集是我暑假从高手那里学到的一招,觉得真是太精妙的设计了。以前我无法解决的一类问题竟然可以用如此简单高效的方法搞定。不分享出来真是对不起party了。(party:我靠,关我嘛事啊?我跟你很熟么?) 来看一个实例,HDU1232畅通工程 首先在地图上给你若干个城镇,这些城镇都可以看作点,然后...
  • liujian20150808
  • liujian20150808
  • 2016-03-10 17:38
  • 2447

关系性并查集

一直自认为并查集不难自从碰到了所谓的带权的并查集之后就彻底扑街。然后各种搜网上的大牛题解,有些不理解但无意中翻到了别人的另一种解题思路,然后认为特别好也很好理解。特别感觉这位同学写的两篇博客   给出链接 http://blog.csdn.net/ky961221/articl...
  • qq_36908995
  • qq_36908995
  • 2017-02-25 23:00
  • 380

并查集的分析及应用

并查集的分析及简单应用,个人理解并作记录之用。 ————凌风 CSDN
  • IAccepted
  • IAccepted
  • 2014-01-27 21:34
  • 3308

并查集 -- 学习详解

作者:Yx.Ac 出处:勇幸|Thinking (http://www.ahathinking.com)         昨天和今天学习了并查集和trie树,并练习了三道入门题目,理解更为深刻,觉得有必要总结一下,...
  • JDPlus
  • JDPlus
  • 2014-02-19 16:50
  • 3866

图—并查集(解决朋友圈问题)

图也是一种 非线性结构,是由多个顶点组成的关系集合组成的一种数据结构。图可以分为两种,无向图和有向图。★图的定义:650) this.width=650;" width="525" height="243" title="无标题.png&q...
  • ttyue_123
  • ttyue_123
  • 2016-08-09 21:44
  • 621

ACM-数据结构-并查集

ACM竞赛中,并查集(DisjointSets)这个数据结构经常使用。顾名思义,并查集即表示集合,并且支持快速查找、合并操作。 并查集如何表示一个集合?它借助树的思想,将一个集合看成一棵有根树。那又如何表示一棵树?初始状态下,一个元素即一棵树,根即是元素本身。 并查集如何支持合并操作?不难发现,...
  • u011787119
  • u011787119
  • 2015-07-10 20:53
  • 1007

并查集的简介及其C/C++代码的实现及优化

文章来自 《并查集的简介及其C/C++代码的实现》  http://blog.csdn.net/stpeace/article/details/46506861 《并查集的“并优化”(leader合并)和“查优化”(路径压缩)》 http://blog.csdn.net/st...
  • Aiphis
  • Aiphis
  • 2015-09-02 20:03
  • 367

4并查集的合并与删除

Recognizing junk mails is a tough task. The method used here consists of two steps:1) Extract the common characteristics from the incoming email.2) Us...
  • mRango
  • mRango
  • 2016-07-06 22:53
  • 750
    个人资料
    • 访问:155553次
    • 积分:4927
    • 等级:
    • 排名:第6843名
    • 原创:329篇
    • 转载:0篇
    • 译文:0篇
    • 评论:80条
    博客专栏
    最新评论