原创 2017年09月01日 20:14:01

概念

堆是一个用数组表示的完全二叉树,并满足以下两个特性:
1)父节点的键值总是大于或等于(小于等于)其子树上的任意结点
2)每个结点的左子树和右子树都是个堆。
如果父节点的键值总是大于等于任何一个子节点的键值,那么这时称之为最大堆或者大顶堆。反之,如果父节点的键值总是小于等于任何一个子节点的键值,那么这时称之为最小堆或者小顶堆。


插入操作

算法如下:
1)如果堆已满则不能插入
1)否则,把需要插入的值x插入到数组最后然后进行调整
2)从最后一个结点的父节点开始循环,如果父节点大于(小于)x,把父节点与x进行对换。
最大堆算法如下(最小堆与之类似,不在此赘述):

//最大堆的插入操作 
bool Insert(int num){
    //最大堆已满则无法插入 
    if(this->IsFull()){
        return false;
    }
    //保存最后一个元素的位置
    int i = ++size; 
    //从最后一个元素的父节点开始进行过滤
    //如果父节点小于num,那么把父节点下移 
    //data[0]控制哨兵元素,它不小于最大堆中最大元素,控制循环结束 
    for(; this->data[i/2] < num ; i /= 2){
        this->data[i] = this->data[i/2];
    }
    this->data[i] = num;
    return true;
}

删除操作

算法如下:
1)如果堆为空,那么不能进行删除
2)否则,首先保存根节点的键值,之后用最后一个结点来代替根节点,对堆进行相应的调整使之称为最大堆或者最小堆。
3)遍历整个堆,找到左右孩子中的最大值(最小值),之后与根节点进行比较,如果根结点小于(大于)左右孩子中则把根结点下移。如果根结点大于等于(小于等于)则跳出循环。

//把data[n]为根的子堆调整为最大堆
void Predown(int n){
    //保存下标为n的元素
    int x = this->data[n];
    int parent,child = 1;
    //用最后一个元素来替代第一个最大值 
    for(parent = n ; parent*2 <= this->size ; parent = child){
        //child指向当前结点的左孩子 
        child = parent*2;
        //左孩子的下标不等于最大堆容量,则说明有右孩子
        //右孩子的键值如果父节点,那么child指向右孩子,否则仍指向左孩子 
        if(child != this->size && this->data[child] < this->data[child+1]){
            child++;//选择左右孩子中最大值 
        }
        if(x >= this->data[child]){//找到了合适的位置 
            break;
        }else{//把孩子上移
            this->data[parent] = this->data[child];
        }
    }
    this->data[parent] = x; 
}

//最大堆的删除最大值操作
int DeleteMax(){
    //最大堆是空时 
    if(this->IsEmpty()){
        return MaxData;
    } 
    int max = this->data[1];
    this->data[1] = this->data[size];
    //最大堆规模减一 
    this->size--;
    //然后把最后一个元素为根结点进行调整为最大堆 
    this->Predown(1);
    return max; 
}

建堆操作

建堆操作有以下两种方式:
1)通过插入操作,将N个元素一个个相继插入到一个初始为空的堆中,其时间代价最大为O(NlogN)
2)线性时间复杂度下建堆:
a)将N个元素依次存入数组里,满足完全二叉树的顺序 储性质
b)调整各个结点的位置,以满足最大堆的有序性
通常采取第二种方式建堆
算法如下:
1)首先把数据输入到堆中
2)从倒数第一个有子节点的父节点开始调整,把这个父节点为根节点的子树调整为堆,直至到根节点

//把data[n]为根的子堆调整为最大堆
void Predown(int n){
    //保存下标为n的元素
    int x = this->data[n];
    int parent,child = 1;
    //用最后一个元素来替代第一个最大值 
    for(parent = n ; parent*2 <= this->size ; parent = child){
        //child指向当前结点的左孩子 
        child = parent*2;
        //左孩子的下标不等于最大堆容量,则说明有右孩子
        //右孩子的键值如果父节点,那么child指向右孩子,否则仍指向左孩子 
        if(child != this->size && this->data[child] < this->data[child+1]){
            child++;//选择左右孩子中最大值 
        }
        if(x >= this->data[child]){//找到了合适的位置 
            break;
        }else{//把孩子上移
            this->data[parent] = this->data[child];
        }
    }
    this->data[parent] = x; 
}

//最大堆的建立函数 
void Create(int* data ,int n){
    //把数据导入最大堆 
    for(int i = 0 ; i < n ; i++){
        this->data[++size] = data[i];
    }
    //从最后一个结点的父节点开始逐步之为根结点的子堆调整为最大堆 
    for(int i = this->size/2 ; i >= 1 ; i--){
        this->Predown(i); 
    }
} 

具体例子

全部代码如下:

#include <iostream>
using namespace std;

//作为最大堆的第0个元素,以之为哨兵 
const int MaxData = 1000000;

class MaxHeap{
    private:
        int* data;          //存储数据的数组 
        int size;           //当前规模 
        int capacity;       //最大容量
    public:
        //最大堆的构造函数 
        MaxHeap(int MaxSize){
            this->data = new int[MaxSize];
            this->size = 0;
            this->capacity = MaxSize;
            this->data[0] = MaxData;
        }

        //把data[n]为根的子堆调整为最大堆
        void Predown(int n){
            //保存下标为n的元素
            int x = this->data[n];
            int parent,child;
            //用最后一个元素来替代第一个最大值 
            for(parent = n ; parent*2 <= this->size ; parent = child){
                //child指向当前结点的左孩子 
                child = parent*2;
                //左孩子的下标不等于最大堆容量,则说明有右孩子
                //右孩子的键值如果父节点,那么child指向右孩子,否则仍指向左孩子 
                if((child != this->size) && this->data[child] < this->data[child+1]){
                    child++;//选择左右孩子中最大值 
                }
                if(x >= this->data[child]){//找到了合适的位置 
                    break;
                }else{//把孩子上移
                    this->data[parent] = this->data[child];
                }
            }
            this->data[parent] = x; 
        }

        //最大堆的建立函数 
        void Create(int* data ,int n){
            //把数据导入最大堆 
            for(int i = 0 ; i < n ; i++){
                this->data[++size] = data[i];
            }
            //从最后一个结点的父节点开始逐步之为根结点的子堆调整为最大堆 
            for(int i = this->size/2 ; i > 0 ; i--){
                this->Predown(i); 
            }
        } 

        //判断最大堆是否已满
        bool IsFull(){
            return this->size == this->capacity;
        } 

        bool IsEmpty(){
            return this->size == 0;
        }

        //最大堆的插入操作 
        bool Insert(int num){
            //最大堆已满则无法插入 
            if(this->IsFull()){
                return false;
            }
            //保存最后一个元素的位置
            int i = ++size; 
            //从最后一个元素的父节点开始进行过滤
            //如果父节点小于num,那么把父节点下移 
            //data[0]控制哨兵元素,它不小于最大堆中最大元素,控制循环结束 
            for(; this->data[i/2] < num ; i /= 2){
                this->data[i] = this->data[i/2];
            }
            this->data[i] = num;
            return true;
        }

        //最大堆的删除最大值操作
        int DeleteMax(){
            //最大堆是空时 
            if(this->IsEmpty()){
                return MaxData;
            } 
            int max = this->data[1];
            this->data[1] = this->data[size];
            //最大堆规模减一 
            this->size--;
            //然后把第一个元素为根结点进行调整为最大堆 
            this->Predown(1);
            return max; 
        }

        //打印最大堆
        void Print(){
            for(int i = 1 ; i <= this->size ; i++){
                cout<<this->data[i]<<" ";
            }
        } 
};

int main()
{
    cout<<"请输入最大堆的最大容量:"<<endl;
    int capacity;
    cin>>capacity;
    MaxHeap maxheap(capacity); 
    cout<<"请输入初始化最大堆的元素个数:"<<endl;
    int size,*data;
    cin>>size;
    data = new int[size];
    cout<<"请初始化元素:"<<endl;
    for(int i = 0 ; i < size ; i++){
        cin>>data[i];
    }
    maxheap.Create(data,size);
    cout<<"最大堆为:"<<endl;
    maxheap.Print();
    cout<<endl;

    //在最大堆中插入元素
    cout<<"请输入要插入的元素:"<<endl;
    int num;
    cin>>num;
    maxheap.Insert(num);
    cout<<"最大堆为:"<<endl;
    maxheap.Print(); 
    cout<<endl;

    cout<<"进行删除操作"<<endl;
    int x = maxheap.DeleteMax();
    cout<<"删除元素为:"<<x<<endl;
    cout<<"最大堆为:"<<endl;
    maxheap.Print();

    return 0;
 } 

截图如下:
这里写图片描述

版权声明:本文为博主原创文章,若需转载,请注明http://blog.csdn.net/qq_30091945

相关文章推荐

图的遍历(下)——邻接表

概述在我的上一篇博客:图的遍历(上)——邻接矩阵 中主要介绍了邻接矩阵的BFS和递归的DFS与非递归的DFS这3种遍历算法。在这篇博客我将主要叙述邻接表的以上3中遍历算法。首先来看看邻接表的表示方法。...

《机器学习实战》——KNN分类算法

下面是《机器学习实战》中的KNN分类算法的笔记。自我觉得学了一段时间的机器学习,KNN可以说是公式推导最简单,最容易理解的一个算法了。资源已经上传,如果有需要请到如下链接下载:http://downl...

利用BP神经网络对语音数据进行分类

最近给学院老师的一篇论文帮忙改进BP神经网络,由于最后要发表论文,神经网络必须自己手写,搞了几个晚上,总算把基础的BP神经网络写出来,接下来再把老师的改进算法实现就ok了。(当然那代码不能公开了)我这...

并查集

并查集并查集是一种树形结构,又叫“不相交集合”,保持了一组不相交的动态集合,每个集合通过一个代表来识别,代表即集合中的某个成员,通常选择根做这个代表。初始化用数组来建立一个并查集,数组下标代表元素,下...

拓扑排序

概述拓扑排序:如果图中从v到w有有一条有向路径,则v一定要排在w之前。满足此条件的顶点序列称为一个拓扑序。获得拓扑序的过程就是拓扑排序。有向无环图:一个有向图中不存在环,则称为有向无环图,简称DAG(...

堆、霍夫曼、搜索树

  • 2015年12月21日 20:30
  • 12KB
  • 下载

数据结构 最大堆

  • 2016年05月29日 12:47
  • 5KB
  • 下载

java最小堆实现优先权队列和求最大的n个数问题

堆在实现优先权队列和求最大最小的n个数问题上,有这莫大的优势! 对于最大堆和最小堆的定义此处不再赘述,课参考网上文章:http://blog.csdn.net/genios/article/detai...
  • abcd_d_
  • abcd_d_
  • 2014年10月22日 17:16
  • 1658

最小堆 实现的霍夫曼编码

  • 2016年12月22日 11:17
  • 6KB
  • 下载

二叉堆(binary heap)

  • 2017年10月06日 22:46
  • 294KB
  • 下载
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:
举报原因:
原因补充:

(最多只允许输入30个字)