原创 2017年09月01日 20:14:01

概念

堆是一个用数组表示的完全二叉树,并满足以下两个特性:
1)父节点的键值总是大于或等于(小于等于)其子树上的任意结点
2)每个结点的左子树和右子树都是个堆。
如果父节点的键值总是大于等于任何一个子节点的键值,那么这时称之为最大堆或者大顶堆。反之,如果父节点的键值总是小于等于任何一个子节点的键值,那么这时称之为最小堆或者小顶堆。


插入操作

算法如下:
1)如果堆已满则不能插入
1)否则,把需要插入的值x插入到数组最后然后进行调整
2)从最后一个结点的父节点开始循环,如果父节点大于(小于)x,把父节点与x进行对换。
最大堆算法如下(最小堆与之类似,不在此赘述):

//最大堆的插入操作 
bool Insert(int num){
    //最大堆已满则无法插入 
    if(this->IsFull()){
        return false;
    }
    //保存最后一个元素的位置
    int i = ++size; 
    //从最后一个元素的父节点开始进行过滤
    //如果父节点小于num,那么把父节点下移 
    //data[0]控制哨兵元素,它不小于最大堆中最大元素,控制循环结束 
    for(; this->data[i/2] < num ; i /= 2){
        this->data[i] = this->data[i/2];
    }
    this->data[i] = num;
    return true;
}

删除操作

算法如下:
1)如果堆为空,那么不能进行删除
2)否则,首先保存根节点的键值,之后用最后一个结点来代替根节点,对堆进行相应的调整使之称为最大堆或者最小堆。
3)遍历整个堆,找到左右孩子中的最大值(最小值),之后与根节点进行比较,如果根结点小于(大于)左右孩子中则把根结点下移。如果根结点大于等于(小于等于)则跳出循环。

//把data[n]为根的子堆调整为最大堆
void Predown(int n){
    //保存下标为n的元素
    int x = this->data[n];
    int parent,child = 1;
    //用最后一个元素来替代第一个最大值 
    for(parent = n ; parent*2 <= this->size ; parent = child){
        //child指向当前结点的左孩子 
        child = parent*2;
        //左孩子的下标不等于最大堆容量,则说明有右孩子
        //右孩子的键值如果父节点,那么child指向右孩子,否则仍指向左孩子 
        if(child != this->size && this->data[child] < this->data[child+1]){
            child++;//选择左右孩子中最大值 
        }
        if(x >= this->data[child]){//找到了合适的位置 
            break;
        }else{//把孩子上移
            this->data[parent] = this->data[child];
        }
    }
    this->data[parent] = x; 
}

//最大堆的删除最大值操作
int DeleteMax(){
    //最大堆是空时 
    if(this->IsEmpty()){
        return MaxData;
    } 
    int max = this->data[1];
    this->data[1] = this->data[size];
    //最大堆规模减一 
    this->size--;
    //然后把最后一个元素为根结点进行调整为最大堆 
    this->Predown(1);
    return max; 
}

建堆操作

建堆操作有以下两种方式:
1)通过插入操作,将N个元素一个个相继插入到一个初始为空的堆中,其时间代价最大为O(NlogN)
2)线性时间复杂度下建堆:
a)将N个元素依次存入数组里,满足完全二叉树的顺序 储性质
b)调整各个结点的位置,以满足最大堆的有序性
通常采取第二种方式建堆
算法如下:
1)首先把数据输入到堆中
2)从倒数第一个有子节点的父节点开始调整,把这个父节点为根节点的子树调整为堆,直至到根节点

//把data[n]为根的子堆调整为最大堆
void Predown(int n){
    //保存下标为n的元素
    int x = this->data[n];
    int parent,child = 1;
    //用最后一个元素来替代第一个最大值 
    for(parent = n ; parent*2 <= this->size ; parent = child){
        //child指向当前结点的左孩子 
        child = parent*2;
        //左孩子的下标不等于最大堆容量,则说明有右孩子
        //右孩子的键值如果父节点,那么child指向右孩子,否则仍指向左孩子 
        if(child != this->size && this->data[child] < this->data[child+1]){
            child++;//选择左右孩子中最大值 
        }
        if(x >= this->data[child]){//找到了合适的位置 
            break;
        }else{//把孩子上移
            this->data[parent] = this->data[child];
        }
    }
    this->data[parent] = x; 
}

//最大堆的建立函数 
void Create(int* data ,int n){
    //把数据导入最大堆 
    for(int i = 0 ; i < n ; i++){
        this->data[++size] = data[i];
    }
    //从最后一个结点的父节点开始逐步之为根结点的子堆调整为最大堆 
    for(int i = this->size/2 ; i >= 1 ; i--){
        this->Predown(i); 
    }
} 

具体例子

全部代码如下:

#include <iostream>
using namespace std;

//作为最大堆的第0个元素,以之为哨兵 
const int MaxData = 1000000;

class MaxHeap{
    private:
        int* data;          //存储数据的数组 
        int size;           //当前规模 
        int capacity;       //最大容量
    public:
        //最大堆的构造函数 
        MaxHeap(int MaxSize){
            this->data = new int[MaxSize];
            this->size = 0;
            this->capacity = MaxSize;
            this->data[0] = MaxData;
        }

        //把data[n]为根的子堆调整为最大堆
        void Predown(int n){
            //保存下标为n的元素
            int x = this->data[n];
            int parent,child;
            //用最后一个元素来替代第一个最大值 
            for(parent = n ; parent*2 <= this->size ; parent = child){
                //child指向当前结点的左孩子 
                child = parent*2;
                //左孩子的下标不等于最大堆容量,则说明有右孩子
                //右孩子的键值如果父节点,那么child指向右孩子,否则仍指向左孩子 
                if((child != this->size) && this->data[child] < this->data[child+1]){
                    child++;//选择左右孩子中最大值 
                }
                if(x >= this->data[child]){//找到了合适的位置 
                    break;
                }else{//把孩子上移
                    this->data[parent] = this->data[child];
                }
            }
            this->data[parent] = x; 
        }

        //最大堆的建立函数 
        void Create(int* data ,int n){
            //把数据导入最大堆 
            for(int i = 0 ; i < n ; i++){
                this->data[++size] = data[i];
            }
            //从最后一个结点的父节点开始逐步之为根结点的子堆调整为最大堆 
            for(int i = this->size/2 ; i > 0 ; i--){
                this->Predown(i); 
            }
        } 

        //判断最大堆是否已满
        bool IsFull(){
            return this->size == this->capacity;
        } 

        bool IsEmpty(){
            return this->size == 0;
        }

        //最大堆的插入操作 
        bool Insert(int num){
            //最大堆已满则无法插入 
            if(this->IsFull()){
                return false;
            }
            //保存最后一个元素的位置
            int i = ++size; 
            //从最后一个元素的父节点开始进行过滤
            //如果父节点小于num,那么把父节点下移 
            //data[0]控制哨兵元素,它不小于最大堆中最大元素,控制循环结束 
            for(; this->data[i/2] < num ; i /= 2){
                this->data[i] = this->data[i/2];
            }
            this->data[i] = num;
            return true;
        }

        //最大堆的删除最大值操作
        int DeleteMax(){
            //最大堆是空时 
            if(this->IsEmpty()){
                return MaxData;
            } 
            int max = this->data[1];
            this->data[1] = this->data[size];
            //最大堆规模减一 
            this->size--;
            //然后把第一个元素为根结点进行调整为最大堆 
            this->Predown(1);
            return max; 
        }

        //打印最大堆
        void Print(){
            for(int i = 1 ; i <= this->size ; i++){
                cout<<this->data[i]<<" ";
            }
        } 
};

int main()
{
    cout<<"请输入最大堆的最大容量:"<<endl;
    int capacity;
    cin>>capacity;
    MaxHeap maxheap(capacity); 
    cout<<"请输入初始化最大堆的元素个数:"<<endl;
    int size,*data;
    cin>>size;
    data = new int[size];
    cout<<"请初始化元素:"<<endl;
    for(int i = 0 ; i < size ; i++){
        cin>>data[i];
    }
    maxheap.Create(data,size);
    cout<<"最大堆为:"<<endl;
    maxheap.Print();
    cout<<endl;

    //在最大堆中插入元素
    cout<<"请输入要插入的元素:"<<endl;
    int num;
    cin>>num;
    maxheap.Insert(num);
    cout<<"最大堆为:"<<endl;
    maxheap.Print(); 
    cout<<endl;

    cout<<"进行删除操作"<<endl;
    int x = maxheap.DeleteMax();
    cout<<"删除元素为:"<<x<<endl;
    cout<<"最大堆为:"<<endl;
    maxheap.Print();

    return 0;
 } 

截图如下:
这里写图片描述

版权声明:本文为博主原创文章,未经博主允许不得转载。若需转载,请注明http://blog.csdn.net/qq_30091945 举报

相关文章推荐

local function definitions are illegal解决办法

原文出处http://wenku.baidu.com/view/1f3eb740c850ad02de8041ac.html 编译错误:local function definitions are i...

数组实现根据二叉树的先序遍历和中序遍历构造二叉树

根据二叉树的先序遍历和中序遍历构造二叉树是非常经典的一道算法题目,但是在网上找到的资料绝大多数都是使用链接方式构造二叉树,感觉这样比较繁琐,因此自己写了一个数组实现的程序,当然,程序不算很完善,还望朋...

我是如何成为一名python大咖的?

人生苦短,都说必须python,那么我分享下我是如何从小白成为Python资深开发者的吧。2014年我大学刚毕业..

平衡二叉树

由于平衡二叉树的前提是二叉搜索树,故关于二叉搜索树的内容请移步如下网址:http://blog.csdn.net/qq_30091945/article/details/77720865概念平衡因子:...

2014年计算机联考真题——带权路径长度之和

思路如下: 利用层次遍历的思路,记录每层的层数level,对于该层的每个叶节点的带权路径长度 = data*(level-1) 算法如下: //求叶子节点带权路径长度之和 ...

根据二叉树的前序遍历和中序遍历,重构出二叉树

题目:这道题目是一道面试题,先序遍历和中序遍历以数组的形式给出,要求我们根据这两个条件重构出二叉树。 下图是一棵二叉树 // 6 // / \...

并查集

并查集并查集是一种树形结构,又叫“不相交集合”,保持了一组不相交的动态集合,每个集合通过一个代表来识别,代表即集合中的某个成员,通常选择根做这个代表。初始化用数组来建立一个并查集,数组下标代表元素,下...

二叉树的构建及其遍历算法

概要二叉树是一种非常重要的数据结构,很多其他数据机构都是基于二叉树的基础演变过来的。二叉树有先、中、后,层次四种遍历方式,因为树的本身就是用递归定义的,因此采用递归的方法实现三种遍历,不仅代码简洁且容...

二叉搜索树

关于二叉树的基本操作请转到我的另一片博客: http://blog.csdn.net/qq_30091945/article/details/77531651概念Binary Search Tree...

根据先序序列与中序序列构建二叉树

算法如下: 1)先在先序序列中找到根结点, 2)在中序序列中找到根结点位置,(可以将二叉树分为左子树和右子树) 3)用同样的办法构造左子树 4)用同样的办法构造右子树。//根据先序序列与中序序...

从大到小输出二叉搜索树中键值不小于K的关键字

概要这是王道数据结构复习资料上的一道题。该书给出了递归算法,但是解析中对于非递归算法说使用非递归中序遍历的思路进行解答,这明显有错误。根据 二叉搜索树的性质可知,二叉搜索树的中序遍历是从小到大的序列,...
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)