关闭

[知识备忘]相机标定+畸变矫正

标签: C++OpenCVVS2010相机标定
137人阅读 评论(0) 收藏 举报
分类:

一、代码

#include "cvut.h"
#include <iostream>
#include <fstream>
#include <string>

using namespace cvut;
using namespace std;

//#pragma comment(lib,"core.lib")
//#pragma comment(lib,"cv.lib")
//#pragma comment(lib,"highgui.lib")
void main()
{
	ifstream fin("calibdata.txt"); /* 定标所用图像文件的路径 */
	ofstream fout("caliberation_result.txt");  /* 保存定标结果的文件 */
	
    /************************************************************************
	       读取每一幅图像,从中提取出角点,然后对角点进行亚像素精确化
	*************************************************************************/
	cout<<"开始提取角点………………";
	int image_count=0;  /* 图像数量 */
	CvSize image_size;  /* 图像的尺寸 */
	CvSize board_size = cvSize(6,8);    /* 定标板上每行、列的角点数 */
	CvPoint2D32f* image_points_buf = new CvPoint2D32f[board_size.width*board_size.height];   /* 缓存每幅图像上检测到的角点 */
	Seq<CvPoint2D32f> image_points_seq;  /* 保存检测到的所有角点 */
	
	string filename;
	while (getline(fin,filename))
	{
		cout<<"\n 将鼠标焦点移到标定图像所在窗口 并输入回车进行下一幅图像的角点提取 \n";

		image_count++;
		int count;
		Image<uchar> view(filename);
		if (image_count == 1) {
			image_size.width = view.size().width;
			image_size.height = view.size().height;
		}
		/* 提取角点 */
		if (0 == cvFindChessboardCorners( view.cvimage, board_size,
            image_points_buf, &count, CV_CALIB_CB_ADAPTIVE_THRESH ))
		{
			cout<<"can not find chessboard corners!\n";
			exit(1);
		} else {

			Image<uchar> view_gray(view.size(),8,1);
			rgb2gray(view,view_gray);
			/* 亚像素精确化 */
			cvFindCornerSubPix( view_gray.cvimage, image_points_buf, count, cvSize(3,3),
				cvSize(-1,-1), cvTermCriteria( CV_TERMCRIT_EPS+CV_TERMCRIT_ITER, 30, 0.1 ));
			image_points_seq.push_back(image_points_buf,count);
			/* 在图像上显示角点位置 */
			//cvDrawChessboardCorners( view.cvimage, board_size, image_points_buf, count, 1);
			//view.show("calib");
			//cvWaitKey();
			//view.close();
		}		
	}
	delete []image_points_buf;
	cout<<"角点提取完成!\n";

	/************************************************************************
	       摄像机定标
	*************************************************************************/
	cout<<"开始定标………………";
	CvSize square_size = cvSize(28,28);  /* 实际测量得到的定标板上每个棋盘格的大小 */
	Matrix<double> object_points(1,board_size.width*board_size.height*image_count,3); /* 保存定标板上角点的三维坐标 */
	Matrix<double> image_points(1,image_points_seq.cvseq->total,2); /* 保存提取的所有角点 */

	Matrix<int> point_counts(1,image_count,1); /* 每幅图像中角点的数量 */
	Matrix<double> intrinsic_matrix(3,3,1); /* 摄像机内参数矩阵 */
	Matrix<double> distortion_coeffs(1,4,1); /* 摄像机的4个畸变系数:k1,k2,p1,p2 */
	Matrix<double> rotation_vectors(1,image_count,3); /* 每幅图像的旋转向量 */
	Matrix<double> translation_vectors(1,image_count,3); /* 每幅图像的平移向量 */


	/* 初始化定标板上角点的三维坐标 */
	int i,j,t;
	for (t=0;t<image_count;t++) {
		for (i=0;i<board_size.height;i++) {
			for (j=0;j<board_size.width;j++) {
				/* 假设定标板放在世界坐标系中z=0的平面上 */
				object_points(0,t*board_size.height*board_size.width+i*board_size.width+j,0) = i*square_size.width;
				object_points(0,t*board_size.height*board_size.width+i*board_size.width+j,1) = j*square_size.height;
				object_points(0,t*board_size.height*board_size.width+i*board_size.width+j,2) = 0;
			}
		}
	}

	/* 将角点的存储结构转换成矩阵形式 */
	for (i=0;i<image_points_seq.cvseq->total;i++) {
		double a=image_points_seq[i].x;
		double b=image_points_seq[i].y;
	
		image_points(0,i,0) = image_points_seq[i].x;
		image_points(0,i,1) = image_points_seq[i].y;
	}

	/* 初始化每幅图像中的角点数量,这里我们假设每幅图像中都可以看到完整的定标板 */
	for (i=0;i<image_count;i++)
		point_counts(0,i) = board_size.width*board_size.height;
	
	/* 开始定标 */
	cvCalibrateCamera2(object_points.cvmat,
					   image_points.cvmat,
                       point_counts.cvmat,
					   image_size,
                       intrinsic_matrix.cvmat,
					   distortion_coeffs.cvmat,
                       rotation_vectors.cvmat,
					   translation_vectors.cvmat,
					   0);
	cout<<"定标完成!\n";

	Matrix<double> object_point2(1,board_size.width*board_size.height,3); /* 保存定标板上角点的三维坐标 */
	Matrix<double> image_point2(1,48,2); /* 保存提取的所有角点 */

		for (i=0;i<48;i++) {

		object_point2(0,i,0) = object_points(0,i,0); 
		object_point2(0,i,1) = object_points(0,i,1);
		object_point2(0,i,2) = object_points(0,i,2);

		image_point2(0,i,0) =image_points(0,i,0) ;
		image_point2(0,i,1) =image_points(0,i,1) ;

	}
		Matrix<double> homography_matrix(3,3,1); /* 摄像机内参数矩阵 */
		cvFindHomography(image_point2.cvmat,object_point2.cvmat,homography_matrix.cvmat);
		cout<<homography_matrix;
	//cout<<rotation_vectors.get_row(1)<<endl;
	//cout<<rotation_vectors.get_col(1)<<endl;

	/************************************************************************
	       对定标结果进行评价
	*************************************************************************/
	cout<<"开始评价定标结果………………\n";
	double total_err = 0.0; /* 所有图像的平均误差的总和 */
	double err = 0.0; /* 每幅图像的平均误差 */
	Matrix<double> image_points2(1,point_counts(0,0,0),2); /* 保存重新计算得到的投影点 */

	cout<<"\t每幅图像的定标误差:\n";
	fout<<"每幅图像的定标误差:\n";
	for (i=0;i<image_count;i++) {
		/* 通过得到的摄像机内外参数,对空间的三维点进行重新投影计算,得到新的投影点 */
		cvProjectPoints2(object_points.get_cols(i*point_counts(0,0,0),(i+1)*point_counts(0,0,0)-1).cvmat,
						rotation_vectors.get_col(i).cvmat,
						translation_vectors.get_col(i).cvmat,
						intrinsic_matrix.cvmat,
						distortion_coeffs.cvmat,
						image_points2.cvmat,
						0,0,0,0);

		/* 计算新的投影点和旧的投影点之间的误差*/
		err = cvNorm(image_points.get_cols(i*point_counts(0,0,0),(i+1)*point_counts(0,0,0)-1).cvmat,
					image_points2.cvmat,
					CV_L1);
		total_err += err/=point_counts(0,0,0);
		cout<<"\t\t第"<<i+1<<"幅图像的平均误差:"<<err<<"像素"<<'\n';
		fout<<"\t第"<<i+1<<"幅图像的平均误差:"<<err<<"像素"<<'\n';
	}
	cout<<"\t总体平均误差:"<<total_err/image_count<<"像素"<<'\n';
	fout<<"总体平均误差:"<<total_err/image_count<<"像素"<<'\n'<<'\n';
	cout<<"评价完成!\n";

	/************************************************************************
	       保存定标结果
	*************************************************************************/
	cout<<"开始保存定标结果………………";
	Matrix<double> rotation_vector(3,1); /* 保存每幅图像的旋转向量 */
	Matrix<double> rotation_matrix(3,3); /* 保存每幅图像的旋转矩阵 */
	
	fout<<"相机内参数矩阵:\n";
	fout<<intrinsic_matrix<<'\n';
	fout<<"畸变系数:\n";
	fout<<distortion_coeffs<<'\n';
	for (i=0;i<image_count;i++) {
		fout<<"第"<<i+1<<"幅图像的旋转向量:\n";
		fout<<rotation_vectors(0,i,0)<<","<<rotation_vectors(0,i,1)<<","<<rotation_vectors(0,i,2)<<'\n';
		//fout<<rotation_vectors.get_col(i);
		/* 对旋转向量进行存储格式转换 */
		for (j=0;j<3;j++) {
			rotation_vector(j,0,0) = rotation_vectors(0,i,j);
		}
		/* 将旋转向量转换为相对应的旋转矩阵 */
		cvRodrigues2(rotation_vector.cvmat,rotation_matrix.cvmat);
		fout<<"第"<<i+1<<"幅图像的旋转矩阵:\n";
		fout<<rotation_matrix;
		fout<<"第"<<i+1<<"幅图像的平移向量:\n";
		fout<<translation_vectors(0,i,0)<<","<<translation_vectors(0,i,1)<<","<<translation_vectors(0,i,2)<<'\n';


		//fout<<translation_vectors.get_col(i)<<'\n';
	}
	cout<<"完成保存\n";
	/************************************************************************
	       图像畸变矫正
	*************************************************************************/
 IplImage *picture = cvLoadImage("image\\IMG_4556.JPG");
	cvShowImage("原图",picture);
	IplImage *picture2=cvCreateImage( cvGetSize(picture), 8, 3 ) ;
	cvUndistort2(picture,picture2,intrinsic_matrix.cvmat,distortion_coeffs.cvmat);
	cvShowImage("矫正图",picture2);
	cvSaveImage("矫正图.jpg",picture2);
	cvWaitKey();
}


2、解释

该程序为张正友标定算法。用于标定单目线性相机的内参参数。

3、使用方法

子文件夹包含一个存放标定模板图片的文件夹与两个txt文件(calibdata.txt,caliberation_result.txt分别用于存放图像定标所用图像文件的路径与定标结果)。
模板图片为7×8棋盘格,图片需要拍摄3张以上完整图像。
看一下代码里的文件名,标定板角点数,棋盘格尺寸等信息是否与自己的文件信息一致。

4、查看标定信息

标定结果:caliberation_result文件与畸变矫正后的图像
具体标定原理可以参考一下博文:
http://blog.sina.com.cn/s/blog_400b87c20100cony.html
http://blog.sina.com.cn/s/blog_b364631a0101imw3.html





   
0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:264次
    • 积分:32
    • 等级:
    • 排名:千里之外
    • 原创:3篇
    • 转载:0篇
    • 译文:0篇
    • 评论:0条
    文章分类
    文章存档