关闭

黄金平衡

标签: pascal编程
429人阅读 评论(0) 收藏 举报

【题目描述】
农夫约翰的N头奶牛有很多相同之处。其实,约翰己经将每头奶牛的不同之处归纳成为K种特性,比如说,1号特性可以代表她身上有斑点,2号特性代表她更喜欢用Pascal而不是C来写程序等等。
约翰使用“特性标识符”来描述奶牛的各种特性:一个特性标识符就是一个二进制长度 为K的整数,每位比特可以标识一头奶牛的一个特性。比如一头奶牛的特性标识符是13,将13写成二进制:1101,从右向左看,就表示这头奶牛具冇1、3、4号特性,但没有2号特性。
约翰把N头奶牛排成了一排,发现在有些连续区间里的奶牛,每种特性出现的次数是一样的,约翰把这样的区间称为“平衡的”。作为一个喜欢研究的人,约翰希望你能帮忙找出平衡区间的最大长度。
【输入格式】
第一行两个整数N和K
接下来N行,每行一个十进制正整数ai表示第i头奶牛的特性标识符
【输出格式】
平衡区间的最大长度
【样例输入】
7 3
7
6
7
2
1
4
2
【样例输出】
4
【分析】
设sum[i,j]表示第1头到第i头奶牛属性j的出现次数,则列出方程:
sum[i][0]-sum[j][0]=sum[i][1]-sum[j][1]=…..=sum[i][k-1]-sum[j][k-1]
将方程变形可得
sum[i][1]-sum[i][0] = sum[j][1]-sum[j][0]
sum[i][2]-sum[i][0] = sum[j][2]-sum[j][0]
……
sum[i][k-1]-sum[i][0] = sum[j][k-1]-sum[j][0]
令count[i,j]=sum[i][j]-sum[i][0],就只要求出满足count[i][]=count[j][] 中最大的i-j即可。

const
  inf=10007; 
type
  arr=array[0..31]of longint; 
    rec=record
        data,no:longint; 
    end; 
var
  sum,count:array[0..100001,0..30]of longint; 
    h:array[0..inf,0..55]of rec; 
    i,j,n,m,max,t:longint; 
function check(x,y:longint):boolean; 
var
  i:longint; 
begin
  for i:=1 to m do
        if count[x,i]<>count[y,i] then exit(false); 
    exit(true); 
end; 
procedure insert(t:longint); 
var
  i,p:longint; 
begin
  p:=0; 
    for i:=1 to m do p:=p+count[t,i]*i; 
    p:=abs(p) mod inf; 
    i:=0; 
    while h[p,i].no=1 do begin
      if check(h[p,i].data,t)=true then begin
          if t-h[p,i].data>max then max:=t-h[p,i].data; 
          exit; 
        end; 
        inc(i); 
    end; 
    h[p,i].no:=1; 
    h[p,i].data:=t; 
end; 
begin
    max:=0; 
    fillchar(h,sizeof(h),0); 
    h[0,0].no:=1; 
  readln(n,m); 
    for i:=1 to n do begin
        read(t); 
        for j:=1 to m do begin
            sum[i,j]:=sum[i-1,j]+t mod 2; 
            count[i,j]:=sum[i,j]-sum[i,1]; 
            t:=t shr 1; 
        end; 
        insert(i); 
    end; 
    write(max); 
end. 
3
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:48362次
    • 积分:2507
    • 等级:
    • 排名:第14733名
    • 原创:167篇
    • 转载:21篇
    • 译文:0篇
    • 评论:12条
    博客专栏