BZOJ 3626 离线+树链剖分+线段树

思路:
抄一波yousiki的…

显然,暴力求解的复杂度是无法承受的。
考虑这样的一种暴力,我们把 z 到根上的点全部打标记,对于 l 到 r 之间的点,向上搜索到第一个有标记的点求出它的深度统计答案。观察到,深度其实就是上面有几个已标记了的点(包括自身)。所以,我们不妨把 z 到根的路径上的点全部 +1,对于 l 到 r 之间的点询问他们到根路径上的点权和。仔细观察上面的暴力不难发现,实际上这个操作具有叠加性,且可逆。也就是说我们可以对于 l 到 r 之间的点 i,将 i 到根的路径上的点全部 +1, 转而询问 z 到根的路径上的点(包括自身)的权值和就是这个询问的答案。把询问差分下,也就是用 [1, r] − [1, l − 1] 来计算答案,那么现在我们就有一个明显的解法。从 0 到 n − 1 依次插入点 i,即将 i 到根的路径上的点全部+1。离线询问答案即可。我们现在需要一个数据结构来维护路径加和路径求和,显然树链剖分或LCT 均可以完成这个任务。树链剖分的复杂度为 O((n + q)· log n · log n),LCT的复杂度为 O((n + q)· log n),均可以完成任务。至此,题目已经被我们完美解决。

//By SiriusRen
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
#define int long long 
#define N 100050
int n,q,v[N],first[N],next[N],tot,all,cnt;
int fa[N],deep[N],son[N],size[N],top[N],p[N];
void add(int x,int y){v[tot]=y,next[tot]=first[x],first[x]=tot++;}
struct Node{int ask,pos,id,ans;}node[N];
struct Tree{int lazy,sum;}tr[N*8];
bool cmp(Node a,Node b){return a.pos<b.pos;}
bool Cmp(Node a,Node b){return a.id<b.id;}
void dfs(int x){
    size[x]=1;
    for(int i=first[x];~i;i=next[i]){
        deep[v[i]]=deep[x]+1;dfs(v[i]);
        size[x]+=size[v[i]];
        if(size[son[x]]<size[v[i]])son[x]=v[i];
    }
}
void dfs2(int x,int tp){
    top[x]=tp,p[x]=++cnt;
    if(son[x])dfs2(son[x],tp);
    for(int i=first[x];~i;i=next[i])if(v[i]!=son[x])
        dfs2(v[i],v[i]);
}
void push_down(int pos,int num){
    int lson=pos<<1,rson=pos<<1|1;
    tr[lson].lazy+=tr[pos].lazy;
    tr[rson].lazy+=tr[pos].lazy;
    tr[lson].sum+=(num-num/2)*tr[pos].lazy;
    tr[rson].sum+=(num/2)*tr[pos].lazy;
    tr[pos].lazy=0;
}
void insert(int l,int r,int pos,int L,int R){
    if(l>=L&&r<=R){tr[pos].sum+=(r-l+1),tr[pos].lazy++;return;}
    if(tr[pos].lazy)push_down(pos,r-l+1);
    int mid=(l+r)>>1,lson=pos<<1,rson=pos<<1|1;
    if(mid<L)insert(mid+1,r,rson,L,R);
    else if(mid>=R)insert(l,mid,lson,L,R);
    else insert(l,mid,lson,L,R),insert(mid+1,r,rson,L,R);
    tr[pos].sum=tr[lson].sum+tr[rson].sum;
}
void ins(int x){
    while(x){
        insert(1,n,1,p[top[x]],p[x]);
        x=fa[top[x]];
    }
}
int query(int l,int r,int pos,int L,int R){
    if(l>=L&&r<=R)return tr[pos].sum;
    int mid=(l+r)>>1,lson=pos<<1,rson=pos<<1|1;
    if(tr[pos].lazy)push_down(pos,r-l+1);
    if(mid<L)return query(mid+1,r,rson,L,R);
    else if(mid>=R)return query(l,mid,lson,L,R);
    else return query(l,mid,lson,L,R)+query(mid+1,r,rson,L,R);
}
int qry(int x){
    int ans=0;
    while(x){
        ans+=query(1,n,1,p[top[x]],p[x]);
        x=fa[top[x]];
    }return ans;
}
signed main(){
    memset(first,-1,sizeof(first));
    scanf("%lld%lld",&n,&q);
    for(int i=2;i<=n;i++)scanf("%lld",&fa[i]),add(++fa[i],i);
    for(int i=1;i<=q;i++){
        int l,r,z;
        scanf("%lld%lld%lld",&l,&r,&z);
        node[++all].ask=z+1,node[all].pos=l,node[all].id=all;
        node[++all].ask=z+1,node[all].pos=r+1,node[all].id=all;
    }
    sort(node+1,node+1+all,cmp);
    dfs(1),dfs2(1,1);
    int temp=1;
    while(node[temp].pos==0)temp++;
    for(int i=1;i<=n;i++){
        ins(i);
        while(node[temp].pos==i)
            node[temp].ans=qry(node[temp].ask),temp++;
    }
    sort(node+1,node+1+all,Cmp);
    for(int i=1;i<=all;i+=2)printf("%lld\n",(node[i+1].ans-node[i].ans)%201314);
}

这里写图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值