关闭

青蛙的约会(扩展欧几里得)

117人阅读 评论(0) 收藏 举报
分类:

原题链接
青蛙的约会
Time Limit: 1000MS Memory Limit: 10000K
Total Submissions: 107560 Accepted: 21497
Description

两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面。它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止。可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置。不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的。但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的。为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面。
我们把这两只青蛙分别叫做青蛙A和青蛙B,并且规定纬度线上东经0度处为原点,由东往西为正方向,单位长度1米,这样我们就得到了一条首尾相接的数轴。设青蛙A的出发点坐标是x,青蛙B的出发点坐标是y。青蛙A一次能跳m米,青蛙B一次能跳n米,两只青蛙跳一次所花费的时间相同。纬度线总长L米。现在要你求出它们跳了几次以后才会碰面。
Input

输入只包括一行5个整数x,y,m,n,L,其中x≠y < 2000000000,0 < m、n < 2000000000,0 < L < 2100000000。
Output

输出碰面所需要的跳跃次数,如果永远不可能碰面则输出一行”Impossible”
Sample Input

1 2 3 4 5
Sample Output

4

根据题意得:x + m*t - (y + n*t) = k*l; —->> t*(m-n) - k*l = y-x —>> k*l + t*(n-m) = x-y;
最终化简得:k * l + t*(n - m) = x - y;
但是最后求出来结果后还要求一下最小的整数解

//http://poj.org/problem?id=1061
#include <algorithm>
#include <iostream>
#include <sstream>
#include <cstring>
#include <cstdio>
#include <cmath>
using namespace std;

const int MOD = int(1e9) + 7;
//int MOD = 99990001;
const int INF = 0x3f3f3f3f;
//const LL INFF = 0x3f3f3f3f3f3f3f3fLL;
//const DB EPS = 1e-9;
//const DB OO = 1e20;
//const DB PI = acos(-1.0); //M_PI;
const int fx[] = {-1, 1, 0, 0};
const int fy[] = {0, 0, -1, 1};
const int maxn=10000 + 10;
typedef long long ll;
//求解方程ax+by=c是否存在一组解x,y,并且返回gcd(a,b)
ll exgcd(ll a,ll b,ll &x,ll &y){
        ll d=a;
        if(b!=0){
                d=exgcd(b,a%b,y,x);
                y-=(a/b)*x;
        }
        else{
                x=1;y=0;
        }
        return d;
}
int main(){
        ll x,y,m,n,L;
        cin >> x >> y >> m >> n >> L;
        ll a=n-m,b=L,t=0,k=0;//(n-m)*t + L*k = x-y;
        ll d=exgcd(a,b,t,k);
        if((x-y)%d)
                cout << "Impossible" << endl;
        else{
                //通过下面的三步操作最后就能实现输出这个方程对于t的最小整数解
                t*=(x-y)/d;
                b/=d;
                cout << (t%b + b)%b << endl;
        }
        return 0;
}
0
0
查看评论

POJ 1061 青蛙的约会 扩展欧几里德 Java

典型的利用扩展欧几里德算法求解模线性方程!!! 【请点击蓝色字体,查看算法详情】import java.io.BufferedReader; import java.io.BufferedWriter; import java.io.InputStreamReader; import java.i...
  • tinyDolphin
  • tinyDolphin
  • 2017-07-30 21:01
  • 368

POJ 1061 青蛙的约会

先说一下大概题意:有两只青蛙,一只在坐标x,另一直在坐标y,青蛙x一次跳跃可以前进m单位距离,青蛙y一次跳跃可以前进n单位的距离,两青蛙都在同一纬度,该纬度长度为L。两只青蛙同方向同时跳啊跳,问你最少跳多少次,它们才可以相遇,如果不能相遇,输出impossble 分析:假设跳了T次以后,青蛙1...
  • ilovexiaohao
  • ilovexiaohao
  • 2013-08-06 09:37
  • 1129

POJ 青蛙的约会 (扩展欧几里得)

青蛙的约会 Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 20000/10000K (Java/Other) Total Submission(s) : 2   Accepted Su...
  • qaz135135135
  • qaz135135135
  • 2016-08-02 19:49
  • 322

bzoj 1477 青蛙的约会 拓展欧几里得(详细解析)

大水题: 题目戳这里:http://www.lydsy.com/JudgeOnline/problem.php?id=1477 这道题我们分析在一个数轴上有两只青蛙,这个数轴是首尾交接的,所以可以一直围着它走,显然我们可以列出一个方程来。设它们走了t步,和他们追击了k圈,也就是围着又走了k圈。 ...
  • Kamisama123
  • Kamisama123
  • 2017-05-31 20:33
  • 151

poj 1061 青蛙的约会(数论)

From:http://blog.chinaunix.net/uid-22263887-id-1778922.html 题意:     略    思路:    根据题意,两个青蛙跳到同一个点上才算是遇到了,所...
  • It_BeeCoder
  • It_BeeCoder
  • 2016-10-19 15:06
  • 481

POJ 1601 青蛙的约会

POJ 1061 青蛙的约会
  • liangdong2014
  • liangdong2014
  • 2014-08-21 17:00
  • 1038

北大POJ题目---青蛙的约会

今天在北大POJ上做到一道题——青蛙的约会,连续研究了数个小时,提交了共有50多次,每次都是以wrong anwser或是Time Limit Exceeded被打了回来。后来没吃晚饭,当看到最后一次显示“Accepted”时,内心的焦躁瞬间舒展开来了。  &...
  • xiefubao
  • xiefubao
  • 2014-01-16 16:38
  • 1984

POJ 青蛙的约会 exgcd

不想搞数论啊啊啊QAQ贴学长博客题解 : 【poj1061】青蛙的约会 exgcd解同余方程我的代码:#include <iostream> #include <cstdio> #include <queue> #include <cstring> #...
  • LOI_QER
  • LOI_QER
  • 2016-10-19 07:01
  • 914

[算法问题]-青蛙的约会---ShinePans

两只青蛙网上相识了们聊得开心于觉得有必要见面们高兴地发现们住同条纬度线上于们约定各自朝西跳直碰面止们出发之前忘记了件重要事情既没有问清楚对方特征也没有约定见面具体位置过青蛙们都乐观们觉得只要直朝着某方向跳下去总能碰对方除非两只青蛙同时间跳同点上永远都能碰面了帮助两只乐观青蛙被要求写程序来判断两只青蛙...
  • panshang1994
  • panshang1994
  • 2014-03-25 19:17
  • 1617

青蛙的约会解题报告(转)

那么什么是线性同余方程?对于方程:ax≡b(mod   m),a,b,m都是整数,求解x 的值。 解题例程:pku1061 青蛙的约会 解题报告 符号说明:          ...
  • ErenNo1
  • ErenNo1
  • 2010-07-29 20:44
  • 864
    个人资料
    • 访问:30296次
    • 积分:1999
    • 等级:
    • 排名:千里之外
    • 原创:177篇
    • 转载:2篇
    • 译文:0篇
    • 评论:2条
    最新评论