整数划分问题

原创 2016年05月30日 21:52:29

递归经典问题
将正整数表示成一系列整数之和
n = n1 + n2 + n3 +++ nk n1>=n2>=n3 >=nk >= 1;
正整数n的这种表示称为正整数n的划分。求正整数n的不同划分个数
例如 5 可以划分为(5), (4,1),(3,2),(3,1,1),(2,2,1)(2,1,1,1)(1,1,1,1,1)。总共7种可能。
建立q(n,m)n为正整数的划分, m为其中最大的加数。
接下来就是分类讨论的时光了
1: n = 1 m无论为何值 只有一种分法 (1)
2: m = 1 n无论为何值 只有一种分法 (1+1+1 ++ ) 总共有n个1在加。
3:n < m 最大的加数比n还大 则变为q(n,m)。
4:n == m 时
子讨论时光又到了
4:1 当分法中包含m时 只有一种分法(m)
4:2 当分法不包含m时 我们刚开始说m是加数 现在分法中不包含m 所以最大的加数现在是m-1
则 q(n,n) = 1 + q(n,n-1)。
5:n > m 时
子讨论时光
5:1当分法中包含m时 (m,n1 + n2 + + nk) n1加到nk的值就是n-m 递归就是子问题与原问题一样只是范围一样 则 q(n-m,m)划分的数变成n-m 最大加数还是m
5:2当分法中不包含m时最大加数变为m-1
综合5 q(n,m) = q(n-m,m) + q(n,m-1)
大综合

q(n,m) n = 1或者m=1 1
n < m q(n, n)
n = m q(n,n-1) + 1
n > m q(n-m,m) + q(n,m-1)。

int q(int n, m)
{
    if(n < 1 || m < 1)
        return 0;
    if(n == 1 || m == 1)
        return 1;
    if(n < m)
        return q(n, n);
    if(n == m)
        return q(n,n-1) + 1;

    return q(n-m,m) + q(n, m-1);//最后一种情况    
}
版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

NYOJ 279 队花的烦恼二和NYOJ 176 整数划分(二)【dp问题或递归】

原题链接:点击。。279         点击。。    176      这两个题 意思基本一样的,就是测试数据的范围不一样。。176数据比较水的,一般不会超时的,但279 你用递归可能就会超时了...

整数划分问题

整数划分问题

  • 2012-04-05 22:26
  • 46KB
  • 下载

整数划分问题

一个整数可以写成多个整数相加的形式,比如4可以写成以下形式 4=4 4=3+1 4=2+2 4=2+1+1 4=1+1+1+1 注意 4=3+1和4=1+3是一样的,现在多加一个要求,即等...

整数划分问题java源码

【算法设计与分析】1、整数划分问题

#include using namespace std; /* void show(int *put, int len) //一个输出函数 { for(int i=0 ; i < len ;...

算法1.复数乘积和整数划分问题

设 (1) 算法设计思路 xy=(ac-bd)+(ad+bc)i可以转换成xy=(ac-bd)+((a+b)(c+d)-ac-bd)i,即为一个3次乘法计算。 在对...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)