hadoop学习之HDFS(2.2):centOS7安装高可用(HA)完全分布式集群hadoop2.7.2

原创 2016年06月01日 09:10:40

前言:

配置高可用(HA)集群在实际生产中可保证集群安全稳定高效的运行,下面讲解一下HA中的各个节点的作用。

1,zookeeper的java进程:QuorumPeermain,各种分布式服务(如hdfs,hbase,resourcemanager)注册到zookeeper上去,即可启动2个以上的相同进程(其中一个状态为active,其他为standby),那么,其中active节点挂了,可通过zookeeper进行切换到standby,让他active,保证进程正常运行。

2,namenode:hdfs的主节点,保存hdfs正常运行的各种必要元数据(保存在edits和fsimage文件中),万一挂了,整个集群就挂了,所以要配置多namenode。

3,datanode:hdfs的数据节点,保存真实数据的节点。

4,journalnode:日志节点,将namenode上的edits文件分离出来,弄成一个集群,保证namenode不被挂。

5,zkfc:全称DFSZKFailoverController,监控并管理namenode的状态和切换。

6,Resourcemanager:管理并分配集群的资源,如为nodemanager分配计算资源等。

7,nodemanager:管理datanode,并随datanode的启动而启动。


一,节点分配:


其实,最好每个节点跑一个进程,奈何机器性能不足,跑不了那么多虚拟机,就将几个节点放在同一个节点上,只将重要的进程(namenode和resourcemanager)放在不同的节点。


二,搭建集群前的工作:

首先是系统环境,详见本人博客:点我进入博客,中的第一步:“hadoop安装环境准备”,按照顺序操作。

然后搭建zookeeper,详见本人博客:点我进入博客


三,修改配置文件

先在node1上修改配置文件,然后传到其他节点。

1,etc/hadoop/hadoop-env.sh

export JAVA_HOME = path_to_jdk    

2,core-site.xml

<configuration>
<!-- 指定hdfs的nameservice为ns1 -->
<property>
  <name>fs.defaultFS</name>
  <value>hdfs://HA</value>
</property>
<!-- 指定hadoop临时目录 -->
<property>
  <name>hadoop.tmp.dir</name>
  <value>/opt/tmp_hadoop2.7.2</value>
</property>
<!-- 指定zookeeper地址 -->
<property>
  <name>ha.zookeeper.quorum</name>
  <value>node1:2181,node2:2181,node3:2181</value>
</property>
</configuration>
3,hdfs-site.xml

<configuration>
<!--指定hdfs的nameservice为HA,需要和core-site.xml中的保持一致 -->
<property>
<name>dfs.nameservices</name>
<value>HA</value>
</property>
<!-- HA下面有两个NameNode,分别是nn1,nn2 -->
<property>
<name>dfs.ha.namenodes.HA</name>
<value>nn1,nn2</value>
</property>
<!-- nn1的RPC通信地址 -->
<property>
<name>dfs.namenode.rpc-address.HA.nn1</name>
<value>node1:9000</value>
</property>
<!-- nn1的http通信地址 -->
<property>
<name>dfs.namenode.http-address.HA.nn1</name>
<value>node1:50070</value>
</property>
<!-- nn2的RPC通信地址 -->
<property>
<name>dfs.namenode.rpc-address.HA.nn2</name>
<value>node2:9000</value>
</property>
<!-- nn2的http通信地址 -->
<property>
<name>dfs.namenode.http-address.HA.nn2</name>
<value>node2:50070</value>
</property>
<!-- 指定NameNode的edits元数据在JournalNode上的存放位置 -->
<property>
<name>dfs.namenode.shared.edits.dir</name>
<value>qjournal://node1:8485;node2:8485;node3:8485/HA</value>
</property>
<!-- 指定JournalNode在本地磁盘存放数据的位置 -->
<property>
<name>dfs.journalnode.edits.dir</name>
<value>/opt/journalData</value>
</property>
<!-- 开启NameNode失败自动切换 -->
<property>
<name>dfs.ha.automatic-failover.enabled</name>
<value>true</value>
</property>
<!-- 配置失败自动切换实现方式 -->
<property>
<name>dfs.client.failover.proxy.provider.HA</name>
<value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value>
</property>
<!-- 配置隔离机制方法,多个机制用换行分割,即每个机制暂用一行-->
<property>
<name>dfs.ha.fencing.methods</name>
<value>
sshfence
shell(/bin/true)
</value>
</property>
<!-- 使用sshfence隔离机制时需要ssh免登陆 -->
<property>
<name>dfs.ha.fencing.ssh.private-key-files</name>
<value>/root/.ssh/id_rsa</value>
</property>
<!-- 配置sshfence隔离机制超时时间 -->
<property>
<name>dfs.ha.fencing.ssh.connect-timeout</name>
<value>30000</value>
</property>
</configuration>


4,mapred-site.xml
<configuration>
<!-- 指定mr框架为yarn方式 -->
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property>
</configuration>	


5,yarn-site.xml

<configuration>
<!-- 开启RM高可用 -->
<property>
<name>yarn.resourcemanager.ha.enabled</name>
<value>true</value>
</property>
<!-- 指定RM的cluster id -->
<property>
<name>yarn.resourcemanager.cluster-id</name>
<value>yrc</value>
</property>
<!-- 指定RM的名字 -->
<property>
<name>yarn.resourcemanager.ha.rm-ids</name>
<value>rm1,rm2</value>
</property>
<!-- 分别指定RM的地址 -->
<property>
<name>yarn.resourcemanager.hostname.rm1</name>
<value>node1</value>
</property>
<property>
<name>yarn.resourcemanager.hostname.rm2</name>
<value>node2</value>
</property>
<!-- 指定zk集群地址 -->
<property>
<name>yarn.resourcemanager.zk-address</name>
<value>node1:2181,node2:2181,node3:2181</value>
</property>
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
</configuration>

6,slaves

node2
node3
node4

配置好后,将配置文件传到其他节点上

scp -r etc/hadoop/* root@node2:~/hadoop-2.7.2/etc/hadoop
scp -r etc/hadoop/* root@node3:~/hadoop-2.7.2/etc/hadoop
scp -r etc/hadoop/* root@node4:~/hadoop-2.7.2/etc/hadoop


四,初始化集群,严格按照一下步骤!

1,在3台节点(node1,2,3)启动zookeeper集群,jps查看有没有启动。

2,在3台节点(node1,2,3)启动journalnode集群,jps查看有没有启动。

sbin/hadoop-daemon.sh start journalnode

3,在node1上格式化hdfs

hdfs namenode -format

4,配置node2上的namenode

先在node1上启动namenode

sbin/hadoop-daemon.sh start namenode

再在node2上执行命令:

hdfs namenode -bootstrapStandby

5,格式化ZKFC(在node1上执行一次即可)

hdfs zkfc -formatZK


现在可以启动集群啦

1,首先启动zookeeper

$ ./start_zk.sh

2,启动hdfs和yarn

sbin/start-dfs.sh
sbin/start-yarn.sh

3,node2上的resourcemanager需要手动启动

yarn-deamon.sh start resourcemanager

至此,高可用hadoop配置完毕,可访问浏览器:

node1:50070   //namenode active
node2:50070   //namenode standby
node1:8088    //resourcemanager active
node2:8088    //resourcemanager  standby

关闭的时候按相反的顺序关闭

五,高可用验证

1,验证hdfs

首先kill掉node1上active的namenode

kill -9 <pid of NN>

然后查看node2上状态为standby的namenode状态变成active。

2,验证yarn

同上,kill掉active状态的rm后,standby状态下的rm即变成active,继续工作。







版权声明:本文为博主原创文章,未经博主允许不得转载。 举报

相关文章推荐

HDFS集群搭建,高可用双机热备模式(HA)自动切换,hdfs+zookeeper+journalnode,步骤分步原理详解(适合初学者)

前 言 作者也是初学hadoop,了解各组件的用途,并且项目中有些东西用不到,所以作者用最简化的组件搭建,避免多余资源的浪费,作者最初构想是zookeeper+hdfs搭建一个分布式文件系统,不用y...

最新Hadoop-2.7.2+hbase-1.2.0+zookeeper-3.4.8 HA高可用集群配置安装

关于准备工作 我这里就不一一写出来了,总结一下有主机名,ip,主机名和ip的映射关系,防火墙,ssh免密码,jdk的安装及环境变量的设置。

精选:深入理解 Docker 内部原理及网络配置

网络绝对是任何系统的核心,对于容器而言也是如此。Docker 作为目前最火的轻量级容器技术,有很多令人称道的功能,如 Docker 的镜像管理。然而,Docker的网络一直以来都比较薄弱,所以我们有必要深入了解Docker的网络知识,以满足更高的网络需求。

Hadoop HA高可用集群搭建(2.7.2)

1.集群规划: 2.前期准备: 3.搭建zookeeper集群(drguo3/drguo4/drguo5)
  • Dr_Guo
  • Dr_Guo
  • 2016-03-24 22:33
  • 7825

HBase+ZooKeeper+Hadoop2.6.0的ResourceManager HA集群高可用配置

问题导读:         0、了解常规JDK安装以及Linux系统配置         1、了解集群规划以及集群场景    ...

zookeeper集群搭建

前   言  zookeeper集群搭建,没有太多可以说的东西,几乎就是照葫芦画瓢。有什么地方不懂或是报错,可以评论,博主会做些修改,若有急需解决问题的,也可直接联系博主,不忙的情况下,博主帮忙解决 ...

从0开始部署hadoop HDFS的HA集群,使用zk实现自动容灾

我有6台虚拟机s201~s206 其中namenode是s201和s206   1.停掉hadoop的所有进程     2.删除所有节点的日志和本地数据.   xcall.sh "rm -...

HDFS集群搭建(HA)与启动

在文章http://blog.csdn.net/u013063153/article/details/73611549写到了非HA集群的搭建。 现利用Zookeeper做HA,搭建HDFS集群。需要修...

hadoop学习之HDFS(2.2):centOS7安装高可用(HA)完全分布式集群hadoop2.7.2

前言: 配置高可用(HA)集群在实际生产中可保证集群安全稳定高效的运行,下面讲解一下HA中的各个节点的作用。 1,zookeeper的java进程:QuorumPeermain,各种分布式服务(如hd...

hadoop学习之HDFS(2):CentOS7安装完全分布式hadoop-2.7.2

一,安装3台虚拟机,固定ip地址: 节点1:192.168.117.131(从) 节点2:192.168.117.135(从) 节点3:192.168.117.136(主节点) 二,安装好jdk ...

hadoop学习之hadoop完全分布式集群安装

注:本文的主要目的是为了记录自己的学习过程,也方便与大家做交流。转载请注明来自: http://blog.csdn.net/ab198604/article/details/8250461  ...
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)