关闭

解题报告:Codeforces Round #432 (Div. 1) D. Tournament Construction (DP+构造)

题目链接 题意: 给出点的出度的去重集合,要求构造一个最小点数的竞赛图 并存在一个出度序列(d1,d2,d3...dn)满足任意前缀k项和大于k*(k-1)/2 (点数 思路: 可以确定点数的上界为61   ( n*30>=n*(n-1)/2 ) 定义: dp[ n ] [ m ] [ l ] :能否用集合的前m项(至少取一个)构造出n个点  l 条边的图...
阅读(38) 评论(0)

解题报告:Codeforces Round #433 (Div. 1) D. Michael and Charging Stations (DP)

题目链接 题意: 已知接下n天每天的消费ai 若某一天只使用现金,则可以得到10%的消费作为代金券 询问度过这n天的最小花费 n 思路: dp[x][y]:第 x 天手上有y金额的代金券所需的最小花费 将ai除以100以缩小第二维的大小,那么可以确定y 因为使用代金券会无法得到代金券,所以每次使用时要尽可能的大 得到递推方程: 当只使用现金时:...
阅读(95) 评论(0)

解题报告:Codeforces Round #433 (Div. 2) E. Boredom ( 离线处理+树状数组)

题目链接 题意: n*n的矩阵,有n个不同行列的格子染色,染色的格子两两之间组成的矩阵定义为beautiful。 q组询问,每次给出一个矩阵,询问与它相交的beautiful的矩阵的数目 n,q 思路: 每次查询分成九个矩阵,只需要知道各个矩阵中的染色的点数,即可得出答案 其中五个矩阵可以由染色的性质可以直接得出答案 离线处理另外四个即可 代码: #include ...
阅读(154) 评论(0)

解题报告:HDU_6176 Function Counting (离散化DP+矩阵快速幂)

题目链接 题意:求满足题目的三个要求的置换的方案 思路: 分析题意发现是一个多重背包 设每个物品的代价为x,价值为y 则物品的代价为满足(2*t+1)*x==k , t 为自然数 对应的价值为2^x 代价为1和2的物品的价值比较特殊,为2^(x-1) 另外代价为2的物品会带上一个(4,4)的物品(交叉取置换) 于是就可以得到一个线性递推方程,基于n和k的范围采用不...
阅读(85) 评论(0)

解题报告:Codeforces Round #432 (Div. 2) E.Arpa and a game with Mojtaba (博弈)

解题报告 题意: 有n个数,你每次可以选择一个素数p,和一个整数k n个数中至少存在一个数x满足:( p^k | x ) 然后将n个数中所有p^k能整除的数除以p^k 两个人轮流进行操作,无法操作的一方输,问初始局势的胜负态 思路: 很明显不同素数之间的局势相互独立,O(n*sqrt(maxa))处理出后可以状压至二进制 那么答案就是各个素数的局势的sg异或 但是发现素数...
阅读(142) 评论(0)

解题报告:Codeforces Round #432 (Div. 2) D. Arpa and a list of numbers 暴力

题目链接 题意: 给定一个序列含n个数,定义这个序列为good当序列里的所有数的gcd>1,你有两种操作: 1:删除一个数,代价为x 2:将一个数加一,代价为y 求把序列变成good的最小代价 思路: 如果知道gcd,可以在O(n)内求出最小代价 可以发现性质:当n个数中公因子越多,选这个公因子做gcd需要变动的数越少,代价可能会越低 于是枚举时限内尽...
阅读(118) 评论(0)

解题报告:HDU_6184 Counting Stars (三元环计数)

题目链接 题意: 给定一张无向图,求以下图形的方案数,点集或边集不同认为是不同方案 点数和 思路: 考虑中间的边,它组成的三元环中任选两个都能组成不同的满足要求的图案 因此跑一遍三元环统计出每条边能组成的三元环个数 偷懒用unordered_map可以卡时限过,最好用hash 代码: #include #define LL long long #...
阅读(43) 评论(0)

解题报告:HDU_6189 Law of Commutation (找规律)

题目链接 题意: 给定n,a,求区间 [ 1 , 1的个数 思路: 打表发现以下规律 1、若a为奇数,答案为1 2、若a为偶数,则对于大于n的b,满足,其中a2,b2为a,b含2的因子个数 3、对于小于n的b,满足的情况有点多,直接暴力check 代码: #include using namespace std; inline long l...
阅读(134) 评论(0)

解题报告:HDU_6185 Covering (轮廓线DP+高斯消元+矩阵快速幂)

题目链接 题意: 给一个4*n的表格,你有两种矩阵(1*2),(2*1),询问放满的方案数。 n 思路: 显然公式应该是一个线性递推方程,知道后可以用矩阵快速幂在O( log(n) * m^3 )求得答案(m为方程的项数) 为了求这个方程,我们可以用轮廓线DP求的方程的前k项 然后假设一个k>m,用高斯消元求k*k的矩阵的秩,从而求得m 再用高斯消元求得方程即可...
阅读(99) 评论(0)

解题报告:HDU_6169 Senior PanⅡ (记忆化搜索)

题目链接 题意: 给定一个区间 [ L , R ] ,询问区内所有最小因子(除去1)为K的数之和 1 官方题解: :  思路: 如果数据范围小一点,应该很容易想到dp的做法 数据范围很大,也可以用离散化DP去做,当然直接用map去跑会超时,需要优化 考虑第一维的大小递减很快,小数据的答案用到的频率会远远多于大数据的频率 那么小数据直接用数组保存,大数据直接用搜索 ...
阅读(49) 评论(0)
123条 共13页1 2 3 4 5 ... 下一页 尾页
    个人资料
    • 访问:23236次
    • 积分:1415
    • 等级:
    • 排名:千里之外
    • 原创:123篇
    • 转载:0篇
    • 译文:0篇
    • 评论:8条