关闭

51nod 1084 双线程dp 矩阵取数v2

标签: 线程算法dp
233人阅读 评论(0) 收藏 举报
分类:

1084 矩阵取数问题 V2
基准时间限制:2 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 收藏 关注
一个M*N矩阵中有不同的正整数,经过这个格子,就能获得相应价值的奖励,先从左上走到右下,再从右下走到左上。第1遍时只能向下和向右走,第2遍时只能向上和向左走。两次如果经过同一个格子,则该格子的奖励只计算一次,求能够获得的最大价值。

例如:3 * 3的方格。

1 3 3
2 1 3
2 2 1

能够获得的最大价值为:17。1 -> 3 -> 3 -> 3 -> 1 -> 2 -> 2 -> 2 -> 1。其中起点和终点的奖励只计算1次。
Input
第1行:2个数M N,中间用空格分隔,为矩阵的大小。(2 <= M, N <= 200)
第2 - N + 1行:每行M个数,中间用空格隔开,对应格子中奖励的价值。(1 <= A[i,j] <= 10000)
Output
输出能够获得的最大价值。
Input示例
3 3
1 3 3
2 1 3
2 2 1
Output示例
17

首先双线程dp 嗯 让两个人同时走
并且路程要不一样 这样的话
首先用一个四维的数组

11 12
27 46 37 1 54 66 19 59 51 56 12
43 59 69 22 63 1 8 38 35 59 9
10 69 41 50 56 4 67 40 5 10 2
19 58 43 11 54 68 46 22 57 9 45
68 43 12 28 64 41 1 59 28 69 68
19 37 39 32 5 10 16 64 11 51 3
42 40 11 51 52 18 12 64 13 2 71
36 1 69 39 29 11 26 39 18 53 5
23 39 7 43 23 63 36 7 65 70 66
66 2 43 17 13 61 55 47 35 56 66
19 1 39 34 37 52 5 38 43 33 21
37 17 43 45 9 67 20 28 6 9 2

#include <iostream>
#include <cstring>
#include <algorithm>
#include <stdio.h>
#include <cmath>
using namespace std;
int d[100][100][100][100];
int a[100][100];
int main()
{
    int n,m;
    while(cin>>n>>m)
    {
        memset(d,0,sizeof(d));
        memset(a,0,sizeof(a));
        int i,j;
        for(i=1;i<=m;i++)
        {
            for(j=1;j<=n;j++)
            {
                cin>>a[i][j];
                 cout<<a[i][j]<<' ';
            }
            cout<<endl;
        }

        int w=0;
        d[1][1][1][1]=a[1][1];
        int x1,x2,y1,y2;
        for(x1=1;x1<=m;x1++)
        {
            for(y1=1;y1<=n;y1++)
            {
                for(x2=1;x2<=m;x2++)
                {
                    for(y2=1;y2<=n;y2++)
                    {
                        if(x1+y1==x2+y2&&x1!=x2)
                        {
                            d[x1][y1][x2][y2]=max(max(d[x1-1][y1][x2-1][y2],d[x1][y1-1][x2][y2-1]),max(d[x1-1][y1][x2][y2-1],d[x1][y1-1][x2-1][y2]))+a[x1][y1]+a[x2][y2];
                            if(w<d[x1][y1][x2][y2]) w=d[x1][y1][x2][y2];
                        }
                        if(x1+y1==x2+y2&&x1==x2)
                        {
                            d[x1][y1][x2][y2]=max(max(d[x1-1][y1][x2-1][y2],d[x1][y1-1][x2][y2-1]),max(d[x1-1][y1][x2][y2-1],d[x1][y1-1][x2-1][y2]))+a[x1][y1];
                            if(w<d[x1][y1][x2][y2]) w=d[x1][y1][x2][y2];
                        }
                    }
                }
            }
        }
        cout<<d[m][n][m][n]<<endl;
    }
    return 0;
}

以下三维优化

#include <iostream>
#include <cmath>
#include <algorithm>
#include <iomanip>
using namespace std;
int d[500][210][210];
int a[210][210];
int main()
{
    int m,n;
    while(cin>>m>>n)
    {
        int i,j;
        for(i=1;i<=n;i++)
        {
            for(j=1;j<=m;j++)
            {
                cin>>a[i][j];
            }
        }

        int k,x1,x2;
        d[1][1][1]=a[1][1];
        for(k=2;k<=m+n;k++)
        {
            for(x1=1;x1<=n;x1++)
            {
                for(x2=1;x2<=n;x2++)
                {
                    int y1,y2;
                    y1=k-x1+1;
                    y2=k-x2+1;
                    if(y1<0||y2<0) continue;
                    if(x1!=x2)
                    d[k][x1][x2]=max(max(d[k-1][x1-1][x2],d[k-1][x1][x2-1]),max(d[k-1][x1-1][x2-1],d[k-1][x1][x2]))+a[x1][y1]+a[x2][y2];
                    else d[k][x1][x2]=max(max(d[k-1][x1-1][x2],d[k-1][x1][x2-1]),max(d[k-1][x1-1][x2-1],d[k-1][x1][x2]))+a[x1][y1];
                }
            }
        }
        cout<<d[m+n-1][n][n]<<endl;
    }
}







0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:45276次
    • 积分:3138
    • 等级:
    • 排名:第10829名
    • 原创:279篇
    • 转载:3篇
    • 译文:2篇
    • 评论:7条
    最新评论