关闭

hihocoder 1257 扩展欧几里得

标签: 扩展欧几里得算法
212人阅读 评论(0) 收藏 举报
分类:

1297 : 数论四·扩展欧几里德

时间限制:10000ms
单点时限:1000ms
内存限制:256MB
描述

小Hi和小Ho周末在公园溜达。公园有一堆围成环形的石板,小Hi和小Ho分别站在不同的石板上。已知石板总共有m块,编号为 0..m-1,小Hi一开始站在s1号石板上,小Ho一开始站在s2号石板上。

小Hi:小Ho,你说我们俩如果从现在开始按照固定的间隔数同时同向移动,我们会不会在某个时间点站在同一块石板上呢?

小Ho:我觉得可能吧,你每次移动v1块,我移动v2块,我们看能不能遇上好了。

小Hi:好啊,那我们试试呗。

一个小时过去了,然而小Hi和小Ho还是没有一次站在同一块石板上。

小Ho:不行了,这样走下去不知道什么时候才汇合。小Hi,你有什么办法算算具体要多久才能汇合么?

小Hi:让我想想啊。。

提示:扩展欧几里德

输入

第1行:每行5个整数s1,s2,v1,v2,m,0≤v1,v2≤m≤1,000,000,000。0≤s1,s2 < m

中间过程可能很大,最好使用64位整型

输出

第1行:每行1个整数,表示解,若该组数据无解则输出-1

样例输入
0 1 1 2 6
样例输出
5

解析跟POJ 1061 一样:http://blog.csdn.net/qq_32866009/article/details/51558587

下面是AC代码:

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;

long long exgcd(long long m,long long &x,long long n,long long &y)
{
    long long x1,y1,x0,y0;
    x0=1,y0=0;
    x1=0,y1=1;
    long long r=(m%n+n)%n;
    long long q=(m-r)/n;
    x=0,y=1;
    while(r)
    {
        x=x0-q*x1;
        y-y0-q*y1;
        x0=x1;
        y0=y1;
        x1=x;
        y1=y;
        m=n;
        n=r;
        r=m%n;
        q=(m-r)/n;
    }
    return n;
}

int main()
{
    long long r,t,yy,x,y,m,n,l,ar,br,cr;
    while(~scanf("%lld%lld%lld%lld%lld",&x,&y,&m,&n,&l))
    {
            long long M=exgcd(n-m,ar,l,br);
            if((x-y)%M||m==n)
            {
                printf("-1\n");
            }
            else
            {
                long long s=l/M;
                ar=ar*((x-y)/M);
                ar=(ar%s+s)%s;
                printf("%lld\n",ar);
            }
    }
    return 0;
}
0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:130301次
    • 积分:7130
    • 等级:
    • 排名:第3169名
    • 原创:596篇
    • 转载:1篇
    • 译文:0篇
    • 评论:58条
    最新评论
    Java栏目
    JAVA学习与有关心得