关闭

哈理工OJ 1151 追求(斐波那契变形【思维题目】)

标签: 哈理工OJ
312人阅读 评论(0) 收藏 举报
分类:

题目链接:
http://acm.hrbust.edu.cn/index.php?m=ProblemSet&a=showProblem&problem_id=1151

追求
Time Limit: 1000 MS Memory Limit: 65536 K
Total Submit: 241(62 users) Total Accepted: 55(48 users) Rating: Special Judge: No
Description
经历了那晚的竹林深处相识后静竹对数学念念不忘,产生了好感!为了追求数学,她想到了一招,要想搞定女友,搞定闺中密友。于是,她秘密与数学的好友斐波那契见面了。学数学的真是不一样,斐波那契的出现前提也是需要解决一道题目,你能帮助静竹同学吗?
斐波那契发明了一种数,他的规律就是F(n)=F(n-1)+F(n-2),其中F(0)=K,F(1)=Q
求第n项的值已经很简单了,现在的问题是需要你求出第n项的值对应的数有多少个不大于n的正整数因子

Input
有多组测试数据
每组测试数据中,第一行输入三个整数,K,Q,T(0<=K, Q, T<1000,)
接下来有T行,每行输入一个整数n(0<=n<1000)
处理到文件结束

Output
按照样例输出要求输出,首先Case k:,k表示第k组测试数据
接下来输出T行,每行输出一个整数代表当前行输入的数n的F(n)值不大于n的正整数因子数目。

Sample Input
1 1 2
2
3
Sample Output
Case 1:
2
2
Author
万祥

下面分析一下本题:
直接暴力能不能行呢?答案是肯定的。肯定不行的,为什么,因为第1000个斐波那契数会爆了long long 然后这个题就挂掉了,然后我们只能苦逼的拿时间来换了,每次新求一个斐波那契数,然后再暴力一下就OK了,其实这个题可以优化的,以前爆过的不需要再爆了,交了一发过了,优化的就先不写了。

下面是AC代码:

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
#define ll long long

int a[1005];

int main()
{
    int k,q,t;
    int iCase=0;
    while(~scanf("%d%d%d",&k,&q,&t))
    {
        a[0]=k;a[1]=q;
        iCase++;
        int n;
        printf("Case %d:\n",iCase);
        while(t--)
        {
            scanf("%d",&n);
            int ans=0;
            if(n==0)
            {
                printf("0\n");
                continue;
            }
            else if(n==1)
            {
                printf("1\n");
                continue;
            }
            for(int i=1;i<=n;i++)
            {
                for(int j=2;j<=n;j++)
                {
                    a[j]=(a[j-1]%i+a[j-2]%i)%i;
                }
                if(a[n]%i==0)
                {
                    ans++;
                }
            }
            printf("%d\n",ans);
        }
    }
    return 0;
}
0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:141649次
    • 积分:7287
    • 等级:
    • 排名:第3144名
    • 原创:600篇
    • 转载:1篇
    • 译文:0篇
    • 评论:58条
    最新评论
    Java栏目
    JAVA学习与有关心得