最长上升子序列 (n^2&&nlogn)

题目链接


这个问题是被称作最长上升子序列LIS的著名问题。通过DP可以有效的解决

定义f[i];以a[i]为末尾的最长上升子序列长度

f[i]=max{f[i],f[j]+1};j<i&&a[j]<a[i]

复杂度O(n*n)

#include<iostream>  
#include<cstring>  
#include<cstdio>  
#include<queue>  
#include<stack>  
#include<algorithm>  
#include<vector> 
#include<map>
#include<vector>
using namespace std;
int main(){
	int n;
	cin>>n;
	int f[1001]={0};
	int a[1001];
	for(int i=0;i<n;i++){
		cin>>a[i];
		f[i]=1;
	}
	f[0]=1;
	for(int i=1;i<n;i++){
		for(int j=0;j<i;j++){
			if(a[i]>a[j]){
				f[i]=max(f[i],f[j]+1); 
			}
		}
	}
	int maxn=0;
	for(int i=0;i<n;i++) if(f[i]>maxn) maxn=f[i];
	cout<<maxn;
	return 0;
}


此外还可以定义其他的递推关系。前面我们利用f求取针对最末尾的元素的最长的子序列。如果子序列的长度相同

那么最末尾的元素较小的在之后会更有优势

例如1 2 5 4 6

我们一开始会保存1 2 5,在遇到4的时候找到>=4的最小下表,然后替换,就变成1 2 4

很显然保存1 2 4比1 2 5对后面更有利

定义f[i]:长度为i+1的上升子序列中末尾元素的最小值(不存在的话就是INF)

借用一下博客内容

转自:http://shangxun.iteye.com/blog/1937828

/*

在川大oj上遇到一道题无法用n^2过于是,各种纠结,最后习得nlogn的算法

最长递增子序列,Longest Increasing Subsequence 下面我们简记为 LIS。
排序+LCS算法 以及 DP算法就忽略了,这两个太容易理解了。

假设存在一个序列d[1..9] = 2 1 5 3 6 4 8 9 7,可以看出来它的LIS长度为5。n
下面一步一步试着找出它。
我们定义一个序列B,然后令 i = 1 to 9 逐个考察这个序列。
此外,我们用一个变量Len来记录现在最长算到多少了

首先,把d[1]有序地放到B里,令B[1] = 2,就是说当只有1一个数字2的时候,长度为1的LIS的最小末尾是2。这时Len=1

然后,把d[2]有序地放到B里,令B[1] = 1,就是说长度为1的LIS的最小末尾是1,d[1]=2已经没用了,很容易理解吧。这时Len=1

接着,d[3] = 5,d[3]>B[1],所以令B[1+1]=B[2]=d[3]=5,就是说长度为2的LIS的最小末尾是5,很容易理解吧。这时候B[1..2] = 1, 5,Len=2

再来,d[4] = 3,它正好加在1,5之间,放在1的位置显然不合适,因为1小于3,长度为1的LIS最小末尾应该是1,这样很容易推知,长度为2的LIS最小末尾是3,于是可以把5淘汰掉,这时候B[1..2] = 1, 3,Len = 2

继续,d[5] = 6,它在3后面,因为B[2] = 3, 而6在3后面,于是很容易可以推知B[3] = 6, 这时B[1..3] = 1, 3, 6,还是很容易理解吧? Len = 3 了噢。

第6个, d[6] = 4,你看它在3和6之间,于是我们就可以把6替换掉,得到B[3] = 4。B[1..3] = 1, 3, 4, Len继续等于3

第7个, d[7] = 8,它很大,比4大,嗯。于是B[4] = 8。Len变成4了

第8个, d[8] = 9,得到B[5] = 9,嗯。Len继续增大,到5了。

最后一个, d[9] = 7,它在B[3] = 4和B[4] = 8之间,所以我们知道,最新的B[4] =7,B[1..5] = 1, 3, 4, 7, 9,Len = 5。

于是我们知道了LIS的长度为5。

!!!!! 注意。这个1,3,4,7,9不是LIS,它只是存储的对应长度LIS的最小末尾。有了这个末尾,我们就可以一个一个地插入数据。虽然最后一个d[9] = 7更新进去对于这组数据没有什么意义,但是如果后面再出现两个数字 8 和 9,那么就可以把8更新到d[5], 9更新到d[6],得出LIS的长度为6。

然后应该发现一件事情了:在B中插入数据是有序的,而且是进行替换而不需要挪动——也就是说,我们可以使用二分查找,将每一个数字的插入时间优化到O(logN)~~~~~于是算法的时间复杂度就降低到了O(NlogN)~! */

上面这个大牛说的很通俗易懂,就copy过来了。

这样我们就知道f数组是严格递增的

如果一个数大于f数组的最后一个元素, 直接添加到f数组的末端

否则找到>=当前元素的最小位置,然后替换掉f数组的元素

查找的过程就可以用二分法

保证了复杂度在O(n*logn)

#include<iostream>  
#include<cstring>  
#include<cstdio>  
#include<queue>  
#include<stack>  
#include<algorithm>  
#include<vector> 
#include<map>
#include<vector>
using namespace std;
int main(){
	int a[10000],f[10000];
	int n;
	cin>>n;
	for(int i=0;i<n;i++) cin>>a[i];
	f[0]=a[0];
	int len=1;
	for(int i=1;i<n;i++){
		
		if(a[i]>f[len-1]){
			f[len++]=a[i];
		}
		else{
			int left=0,right=len-1;
			while(left<right){
				int mid=(left+right)/2;
				if(f[mid]>=a[i]) right=mid;
				else left=mid+1;
			}
			f[left]=a[i];
		}
	} 
	
	cout<<len;
	return 0;
}

STL里面给我们写好了lower_bound函数,这个函数是从一个序列中利用二分搜索找出只想满足a[i]>=k的a[i]的最小指针

上述代码可以改为

#include<iostream>  
#include<cstring>  
#include<cstdio>  
#include<queue>  
#include<stack>  
#include<algorithm>  
#include<vector> 
#include<map>
#include<vector>
using namespace std;
int main(){
	int a[10000],f[10000];
	int n;
	cin>>n;
	for(int i=0;i<n;i++) cin>>a[i];
	f[0]=a[0];
	int len=1;
	for(int i=1;i<n;i++){
		if(a[i]>f[len-1]){
			f[len++]=a[i];
		}
		else{
			*lower_bound(f,f+len,a[i])=a[i];
		}
	} 
	
	cout<<len;
	return 0;
}
同样的函数还有upper_bound,这个函数是找到满足a[i]>k的a[i]的最小指针

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值