POJ 2155 Matrix(二维树状数组+区间更新单点求和)

原创 2016年09月08日 01:07:25

题意:给你一个n*n的全0矩阵,每次有两个操作:
C x1 y1 x2 y2:将(x1,y1)到(x2,y2)的矩阵全部值求反
Q x y:求出(x,y)位置的值

树状数组标准是求单点更新区间求和,但是我们处理一下就可以完美解决此问题。区间更新可以使用区间求和的方法,在更新的(x2,y2)记录+1,在更新的(x1-1,y1-1)-1(向前更新到最前方)。单点求和就只需要与区间更新相反,向后求一个区间和。这样做的理由是:如果求和的点在某次更新范围内,我们+1但是不执行-1,否者要么都不执行,要么都执行就不变。
但是这儿我们是二维树状数组,我们需要使用容斥原理:(x2,y2)+1,(x1-1,y2)-1,(x2,y1-1)-1,(x1-1,y1-1)+1

#include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<vector>
#include<string>
#include<cstdio>
#include<cstring>
#include<stdlib.h>
#include<iostream>
#include<algorithm>
using namespace std;
#define eps 1E-8
/*注意可能会有输出-0.000*/
#define Sgn(x) (x<-eps? -1 :x<eps? 0:1)//x为两个浮点数差的比较,注意返回整型
#define Cvs(x) (x > 0.0 ? x+eps : x-eps)//浮点数转化
#define zero(x) (((x)>0?(x):-(x))<eps)//判断是否等于0
#define mul(a,b) (a<<b)
#define dir(a,b) (a>>b)
typedef long long ll;
typedef unsigned long long ull;
const int Inf=1<<28;
const double Pi=acos(-1.0);
const int Mod=1e9+7;
const int Max=1010;
int bit[Max][Max],n;
void Init(int n)
{
    for(int i=0;i<=n;i++)
        for(int j=0;j<=n;j++)
        bit[i][j]=0;
    return;
}
int lowbit(int x)
{
    return x&(-x);
}
void Add(int x,int y,int z)
{
    for(int i=x;i>0;i-=lowbit(i))
    {
        for(int j=y;j>0;j-=lowbit(j))
        {
            bit[i][j]=(bit[i][j]+z+2&1);
        }
    }
    return;
}
int Sum(int x,int y)
{
    int sum=0;
    for(int i=x;i<=n;i+=lowbit(i))
    {
        for(int j=y;j<=n;j+=lowbit(j))
        {
            sum+=bit[i][j];
        }
    }
    return sum & 1;
}
int main()
{
    int t,q,xx1,xx2,yy1,yy2;
    char str[10];
    scanf("%d",&t);
    while(t--)
    {
        scanf("%d %d",&n,&q);
        Init(n);
        while(q--)
        {
            scanf("%s",str);
            if(str[0]=='C')
            {
                scanf("%d %d %d %d",&xx1,&yy1,&xx2,&yy2);
                Add(xx2,yy2,1);//区间更新的容斥原理
                Add(xx1-1,yy2,-1);
                Add(xx2,yy1-1,-1);
                Add(xx1-1,yy1-1,1);
            }
            else
            {
                scanf("%d %d",&xx1,&yy1);
                printf("%d\n",Sum(xx1,yy1));
            }
        }
        if(t)
            printf("\n");
    }
    return 0;
}
版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

[TYVJ P1716/BZOJ 3132 上帝造题的七分钟] 二维树状数组区间修改、区间查询

[TYVJ P1716/BZOJ 3132 上帝造题的七分钟] 二维树状数组区间修改、区间查询知识点:data structure binary index tree1. 题目链接[TYVJ P171...

[树状数组] 区间求和的三种模型

树状数组在区间求和问题上有很高的效率,尤其在非常困难的比赛中(数据量大,对时间限制很严格的比赛)能发挥非常大的作用,其各种复杂度都要比线段树低很多,而且其代码简洁优美……有关区间求和,主要有以下三个模...

树状数组区间求和三种模型

树状数组在区间求和问题上有大用,其三种复杂度都比线段树要低很多……有关区间求和的问题主要有以下三个模型(以下设A[1..N]为一个长为N的序列,初始值为全0): (1)“改点求段”型,即对于...

Two Cylinders (辛普森公式处理积分)

Two Cylinders (辛普森公式处理积分):http://acm.hust.edu.cn/vjudge/contest/view.action?cid=120113#problem/I   传...
  • PNAN222
  • PNAN222
  • 2016年06月26日 18:23
  • 1385

计算几何 二维凸包问题 Andrew算法

凸包:把给定点包围在内部的、面积最小的凸多边形。 本文介绍求解二维凸包的O(nlogn)的Andrew算法和少量例题,以及代码模板。...
  • Lytning
  • Lytning
  • 2014年05月07日 19:06
  • 2029

01变换 二维树状数组+区间更新,单点查询 poj 2155 Matrix

点击打开poj 2155 Matrix Time Limit: 3000MS   Memory Limit: 65536K Total Submissio...

POJ 2155-Matrix(二维树状数组-区间修改 单点查询)

Matrix Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 27355   Accept...
  • MIKASA3
  • MIKASA3
  • 2017年05月04日 18:19
  • 228

POJ - 2155 Matrix (二维树状数组 + 区间修改 + 单点求值 或者 二维线段树 + 区间更新 + 单点求值)

POJ - 2155 Matrix Time Limit: 3000MS   Memory Limit: 65536KB   64bit IO Format: %I64d & %I64u ...

poj 2155 Matrix 树状数组 区间更新单点求值

#include #include #include #include #include #include #include #include #include #include #include #...

poj 2155 二维树状数组/区间更新单点查询

Matrix Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 20002   Accept...
  • HTT_H
  • HTT_H
  • 2015年04月08日 18:07
  • 320
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:POJ 2155 Matrix(二维树状数组+区间更新单点求和)
举报原因:
原因补充:

(最多只允许输入30个字)