关闭

t 检验

标签: 数据R语言t检验
284人阅读 评论(0) 收藏 举报

t检验

T检验,亦称student t检验(student’s t test),主要用于变量为连续型的组间比较,样本含量较小(例如n<30),总体标准差σ未知且服从正态分布.

T检验是用于小样本(样本容量小于30)的两个平均值差异程度的检验方法。

它是用T分布理论来推断差异发生的概率,从而判定两个平均数的差异是否显著。

为了阐明方法,我们将使用MASS包中的UScrime数据集。它包含1960年美国47个州的刑罚制度对犯罪率影响的信息。我们感兴趣的结果变量为 Prob(监禁的概率)、U1(14-24岁年龄段城市男性失业率)和U2(35-39岁年龄段城市男性失业率)。类别型变量 So(指示该州是否位于南方的指示变量)将作为分组变量使用。

1. 独立样本的t检验

我们比较的对象是南方和非南方各州,因变量为监禁的概率。一个针对两组的独立样本t检验可以用于检验两个总体的均值相等的假设。这里假设两组数据是独立的,并且是从正态总体中抽得。
检验的调用格式为:

t.test(y ~ x,data)其中 y 是一个数值型变量, x 是一个二分变量

t.test(y1,y2)其中的 y1 和 y2 为数值型向量(即各组的结果变量)。

在下列代码中,我们使用了一个假设方差不等的双侧检验,比较了南方(group1)和非南方(group0)各州的监禁概率:

library(MASS)
t.test(Prob ~ So, data = UScrime)

可以拒绝南方各州和非南方各州拥有相同监禁概率的假设(p < .001)。

library(MASS)
t.test(UScrime$Prob,UScrime$So)

默认地,t.test不会假设样本具有相同的方差,因此该函数默认地调用Welch t检验方法而不是student t检验。

如果我们要调用student t检验方法,那么我们需要设置参数var.equal=TRUE。

library(MASS)
t.test(Prob ~ So, data = UScrime,var.equal=TRUE)

2. 非独立样本的t检验

较年轻(14-24岁)男性的失业率U1是否比年长(35-39岁)男性的失业率U2更高?在这种情况下,这两组数据并不独立。你不能说亚拉巴马州的年轻男性和年长男性的失业率之间没有关系。

非独立样本的t检验假定组间的差异呈正态分布。检验的调用格式为:t.test(y1,y2,paired=TRUE)其中的y1和y2为两个非独立组的数值向量。

library(MASS)
sapply(UScrime[c("U1","U2")],function(x)(c(mean=mean(x),sd=sd(x))))
with(UScrime,t.test(U1, U2,paired=TRUE))##with就是把所有操作都限制在数据框上。比如说你手上有两组数据,asian是亚洲人的身体参数:体重身高视力等等,european是欧洲人的,那么with(asian,height)就是调去asian数据中的height.with(european,height) 就是调用european数据中的height

差异的均值(61.5)足够大,可以保证拒绝年长和年轻男性的平均失业率相同的假设。年轻男性的失业率更高。

3. 多于两组的情况

如果想在多于两个的组之间进行比较,应该怎么做?如果能够假设数据是从正态总体中独立抽样而得的,那么你可以使用方差分析(ANOVA)。ANOVA是一套覆盖了许多实验设计和准实验设计的综合方法。

0
0
查看评论

t检验

数据出来了要做三件事:1,检验一下数据是否符合正态分布;2,如果符合正态分布,就进行T检验,看P值是否小于0.05;3,如果数据不符合正态分布,就用另外的“非参数检验”。但是我完全不明白这些名词背后是什么原理。 这些原理是这样的: 举个例子:好比我们有一个H0假设(不希望出现的假设)说:“抽烟人...
  • shulixu
  • shulixu
  • 2016-11-26 20:00
  • 5285

【通俗向】方差分析--T检验和F检验的异同

最近在图书馆借了本《R和ASReml-R统计分析教程》,林元震和陈晓阳主编的关于R的书籍,当时看上这本书的原因在于里面以统计学知识为主,作为R语言实战的良好补充,虽然R语言实战是一本相当详实的介绍R语言的书,但是其中的统计学原理往往一笔带过(虽然本书也不是很详尽),但是作为一个数据分析从业人员,我感...
  • Yunru_Yang
  • Yunru_Yang
  • 2017-03-29 11:59
  • 5473

Ttest(T检验)

1. Ttest(T检验) 1.1 概念 t检验是用t分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。它与f检验、卡方检验并列。 t检验的来历 当总体呈正态分布,如果总体标准差未知,而且样本容量 检验是用 分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。 检验分为单总...
  • liuwei063608
  • liuwei063608
  • 2017-05-27 15:31
  • 510

u检验和t检验区别与联系

u检验的应用条件是:样本例数n较大或样本例数虽小但是总体标准差已知
  • luobogen666
  • luobogen666
  • 2017-09-13 10:55
  • 813

R语言中的T检验-单个总体T检验

单个总体T检验
  • lijinxiu123
  • lijinxiu123
  • 2016-12-21 18:55
  • 3569

python T检验

pwd ‘d:\\python\\exerise-df\\df-data-analysis’ from scipy import stats import pandas as pd import numpy as np from statsmodels.formula.api import o...
  • yijiaobani
  • yijiaobani
  • 2017-09-27 15:30
  • 813

SPSS独立样本t检验结果分析

SPSS独立样本t检验结果分析 上图为独立样本T检验。 由下图的基本参数设置生成 结果解读:三步法 第一步:拿到两组核心基本统计量,对于数值变量,核心基本统计量就三个,样本量N,均值,标准差。然后产生主观意识,发现男生肺活量是3887.16,女生肺活量是2522.57,给人男生肺活量可能比女...
  • aurorayqz
  • aurorayqz
  • 2017-04-09 01:26
  • 12959

通俗理解T检验与F检验的区别

1,T检验和F检验的由来 一般而言,为了确定从样本(sample)统计结果推论至总体时所犯错的概率,我们会利用统计学家所开发的一些统计方法,进行统计检定。   通过把所得到的统计检定值,与统计学家建立了一些随机变量的概率分布(probability distribution)进行比较...
  • Rango_lhl
  • Rango_lhl
  • 2016-09-22 11:36
  • 1160

python进行独立样本t检验

在判断两个样本的差异性的时候,我们使用独立样本t检验from scipy.stats import ttest_rela = [3,5,4,6,5,5,4,5,3,6,7,8,7,6,7,8,8,9,9,8,7,7,6,7,8] b = [7,8,6,7,8,9,6,6,7,8,8,7,9,10...
  • baidu_15113429
  • baidu_15113429
  • 2017-06-28 16:17
  • 542

假设检验的基本原理和T检验

转载lietal AlgorithmDog AlgorithmDog,督促自己系统学习 假设检验原理: T检验介绍: T检验导出 T检验类型 T 检验有多种类型,可以分为只有一组样本的单体检验和有两组样本的双体检验。单体检验用于检验样本的分布期望是否等于某个值。双体检...
  • lu839684437
  • lu839684437
  • 2017-05-11 15:36
  • 933
    个人资料
    • 访问:3923次
    • 积分:69
    • 等级:
    • 排名:千里之外
    • 原创:3篇
    • 转载:0篇
    • 译文:0篇
    • 评论:0条
    文章分类
    文章存档