第九周实践——阅读程序(3)

原创 2016年06月01日 21:39:09
/*
 *Copyright (c) 2016,烟台大学计算机学院
 *All rights reserved.
 *文件名称 :
*作    者 : 刘亚
*完成日期 : 2016年5月28号
*版 本 号 : v1.0
*问题描述 :  阅读程序,写出的程序的运行结果并理解
 *输入描述 :   无   
*程序输出 :   
 */





 #include <iostream> 
using namespace std; 
class AA 
{
public: 
    AA(int i,int j)  
    { 
        A=i; 
        B=j; 
        cout<<"Constructor\n"; 
    } 
    AA(AA &obj)  
    { 
        A=obj.A+1; 
        B=obj.B+2; 
        cout<<"Copy_Constructor\n"; 
    } 
    ~AA() { 
        cout<<"Destructor\n"; 
    } 
    void print() 
    { 
        cout<<"A="<<A<<",B="<<B<<endl; 
    } 
private: 
    int A,B; 
}; 
int main() 

    AA a1(2,3); 
    AA a2(a1); 
    a2.print(); 
    AA *pa=new AA(5,6); 
    pa->print(); 
    delete pa; 
    return 0; 


第九周实践——阅读程序(3)

/*  *Copyright (c) 2016,烟台大学计算机学院  *All rights reserved.  *文件名称 :  *作    者 : 徐聪 *完成日期 : 2016年4月...
  • ccxucong
  • ccxucong
  • 2016年04月28日 08:44
  • 98

第九周阅读程序3

/* *Copyright (c)2016,烟台大学计算机与控制工程学院 *All rights reserved. *文件名称:main.cpp *作 者:隋文韬 *完成日...
  • swt154129
  • swt154129
  • 2016年05月26日 08:37
  • 124

第九周实践——阅读程序(2)

/*  *Copyright (c) 2016,烟台大学计算机学院  *All rights reserved.  *文件名称 :  *作    者 : 徐聪 *完成日期 : 2016年4月...
  • ccxucong
  • ccxucong
  • 2016年04月28日 08:37
  • 131

第九周实践——阅读程序(1)

/*  *Copyright (c) 2016,烟台大学计算机学院  *All rights reserved.  *文件名称 :  *作    者 : 徐聪 *完成日期 : 2016年4月...
  • ccxucong
  • ccxucong
  • 2016年04月28日 08:33
  • 144

Coursera Machine Learning 第九周 quizProgramming Exercise 8: Anomaly Detection and Recommender Systems

estimateGaussian.m function [mu sigma2] = estimateGaussian(X) %ESTIMATEGAUSSIAN This function estima...
  • mupengfei6688
  • mupengfei6688
  • 2016年11月13日 18:14
  • 2040

Coursera—machine learning(Andrew Ng)第九周编程作业

estimateGaussian.m function [mu sigma2] = estimateGaussian(X) %ESTIMATEGAUSSIAN This function esti...
  • ccblogger
  • ccblogger
  • 2018年01月17日 16:46
  • 101

coursera Machine Learning 第九周 测验quiz2答案解析 Recommender Systems

1.选择:BD 解析:A的k没看懂是什么,前面求和积的明明是j,i,故错误。C为什么要减去r,所以错误。 2.选择:AD 解析:协同过滤最适合做相似度、推荐等情形,但是不能预测销售数...
  • sinat_39805237
  • sinat_39805237
  • 2018年01月07日 20:23
  • 199

第九周实践(3)

Copyright (c) 2016,烟台大学计算机学院. All rights reserced. 文件名称:test.cpp 作者        :秦通 完成日期:2016.5.19 版...
  • qt1051424840
  • qt1051424840
  • 2016年05月19日 08:19
  • 105

Coursera机器学习-第九周-Anomaly Detection

Density EstimationProblem Motivation 所谓异常检测就是发现与大部分对象不同的对象,其实就是发现离群点,异常检测有时也称偏差检测,异常对象是相对罕见的。 应用:欺...
  • dingchenxixi
  • dingchenxixi
  • 2016年06月18日 13:57
  • 3344

Machine Learning第九周笔记:异常检测与推荐系统

Andrew Ng在Machine Learning的第九周介绍了异常检测(anomaly detection)和推荐系统(recommender system),将笔记整理在下面。...
  • MajorDong100
  • MajorDong100
  • 2016年04月11日 10:16
  • 4431
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:第九周实践——阅读程序(3)
举报原因:
原因补充:

(最多只允许输入30个字)