关闭

练习3-N

60人阅读 评论(0) 收藏 举报

题目:Problem N 

Problem Description
我们看到过很多直线分割平面的题目,今天的这个题目稍微有些变化,我们要求的是n条折线分割平面的最大数目。比如,一条折线可以将平面分成两部分,两条折线最多可以将平面分成7部分,具体如下所示。<br><img src=../data/images/C40-1008-1.jpg>

Input
输入数据的第一行是一个整数C,表示测试实例的个数,然后是C 行数据,每行包含一个整数n(0<n<=10000),表示折线的数量。<br><br>

Output
对于每个测试实例,请输出平面的最大分割数,每个实例的输出占一行。<br><br>

Sample Input
2 1 2

Sample Output
2 7

题意:

用折线切割平面,其中,一条折线的头部不会造成切割;

思路:

1递推递推,先分析下直线分割平面的情况,增加第n条直线的时候,跟之前的直线最多有n-1个交点,此时分出的部分多出了

      (n-1)+1;

2折线也是同理,f(1)=2,f(2)=7,先画好前面n-1条折线,当增加第n条拆线时,此时与图形新的交点最多有2*2(n-1)个,所以分出的部分多出了2*2(n-1)+1   

    所以推出f(n)=f(n-1)+4*(n-1)+1,n>=3



代码:

# include <iostream>


using namespace std;

int_fast64_t ff[10005];

int f()
{
    ff[0] = 0;
    ff[1] = 2;
    for(int i = 2; i < 10005; i++)
    {
        ff[i] = ff[i-1] + 4*(i-1)+1;
    }
}
int main()
{
    f();
    int n;
    cin >> n;
    while(n--)
    {
        int m;
        cin >> m;
        cout << ff[m] <<endl;
    }
    return 0;
}


0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:2722次
    • 积分:282
    • 等级:
    • 排名:千里之外
    • 原创:27篇
    • 转载:0篇
    • 译文:0篇
    • 评论:0条