关闭

练习3-P

82人阅读 评论(0) 收藏 举报

题目:Problem P 

Problem Description
在一无限大的二维平面中,我们做如下假设:<br>1、&nbsp;&nbsp;每次只能移动一格;<br>2、&nbsp;&nbsp;不能向后走(假设你的目的地是“向上”,那么你可以向左走,可以向右走,也可以向上走,但是不可以向下走);<br>3、&nbsp;&nbsp;走过的格子立即塌陷无法再走第二次;<br><br>求走n步不同的方案数(2种走法只要有一步不一样,即被认为是不同的方案)。<br>

Input
首先给出一个正整数C,表示有C组测试数据<br>接下来的C行,每行包含一个整数n (n<=20),表示要走n步。<br>

Output
请编程输出走n步的不同方案总数;<br>每组的输出占一行。<br>

Sample Input
2 1 2

Sample Output
3 7

题意:

如题;

思路:

设第n步的走法为F(n),往上走的步数为a(n),往左或往右走的步数为b(n);所以F(n)=a(n)+b(n);接下来分别找前一个状态。因为不能往下走,所以向上走的步数只有一种选择就是上一次的步数相加:a(n)=a(n-1)+b(n-1)(前(n-1)步内往上走的步数+前(n-1)步内往左或右的步数);又因为走过的不能返回,所以往左或右走只有一种方法,但向上走可以是左上和右上两种,因此b(n)=2*a(n-1)+b(n-1);化简得F(n)=2*F(n-1)+F(n-2);


代码:

# include <iostream>

using namespace std;

int64_t b[25];

int bb()
{
    b[0] = 1;
    b[1] = 3;
    for (int i = 2; i < 51; i++)
    {
        b[i] = 2*b[i-1] + b[i-2];
    }
}


int main()
{
    bb();
    int n;
    cin >> n;
    while (n--)
    {
        int m;
        cin >> m;
        cout << b[m]<<endl;
    }

    return 0;
}


0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:2958次
    • 积分:285
    • 等级:
    • 排名:千里之外
    • 原创:27篇
    • 转载:0篇
    • 译文:0篇
    • 评论:0条