关闭

radon变换介绍

933人阅读 评论(0) 收藏 举报

简介

图像投影,就是说将图像在某一方向上做线性积分(或理解为累加求和)。如果将图像看成二维函数f(x, y),则其投影就是在特定方向上的线性积分,比如f(x, y)在垂直方向上的线性积分就是其在x轴上的投影;f(x, y)在水平方向上的线积分就是其在y轴上的投影。通过这些投影,可以获取图像在指定方向上的突出特性,这在图像模式识别等处理中可能会用到。

Radon变换(拉东变换),就是将数字图像矩阵在某一指定角度射线方向上做投影变换。这就是说可以沿着任意角度theta来做Radon变换。

实例

% 实验Radon变换
% By lyqmath
% Dalian University of Technology
% School of Mathematical Sciences
clc; clear all; close all;
I = zeros(256, 256);
[r, c] = size(I);
I(floor(1/5*r:4/5*r), floor(3/5*c:4/5*c)) = 1;
figure;
subplot(2, 2, 1); imshow(I); title('原图像');
[R, xt] = radon(I, [0 45 90]); % 在0、45、90度方向做radon变换
subplot(2, 2, 2); 
plot(xt, R(:, 1));
title('水平方向的radon变换曲线');
subplot(2, 2, 3); 
plot(xt, R(:, 2));
title('45度方向的radon变换曲线');
subplot(2, 2, 4); 
plot(xt, R(:, 3));
title('垂直方向的radon变换曲线');

总结
由于radon变换将图像变换到按角度投影区域,和有名的hough类似,可以应用于检测直线。个人认为,通过将图像矩阵在多角度做积分投影,再对得到的数据做统计分析,可以确定出图像的一些基本性质
附:
Hough变换是图像处理中从图像中识别几何形状的基本方法之一。Hough变换的基本原理在于利用点与线的对偶性,将原始图像空间的给定的曲线通过曲线表达形式变为参数空间的一个点。这样就把原始图像中给定曲线的检测问题转化为寻找参数空间中的峰值问题。也即把检测整体特性转化为检测局部特性。比如直线、椭圆、圆、弧线等。

1
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:8778次
    • 积分:157
    • 等级:
    • 排名:千里之外
    • 原创:3篇
    • 转载:18篇
    • 译文:1篇
    • 评论:0条