关闭

Ubuntu14.04下caffe的配置

标签: 深度学习
197人阅读 评论(0) 收藏 举报
分类:

ubuntu14.04 + cuda7.5 + opencv3.0 + cudnn7.0_v4

参考网址:http://ouxinyu.github.io/Blogs/20151108001.html

                    http://blog.csdn.net/ubunfans/article/details/47724341



nVidia CUDA Toolkit的安装(*.deb方法)
$ sudo dpkg -i cuda-repo-ubuntu1404-7-5-local_7.5-18_amd64.deb
$ sudo apt-get update
$ sudo apt-get install -y cuda

Environment Variables
$ export CUDA_HOME=/usr/local/cuda-7.5
$ export LD_LIBRARY_PATH=${CUDA_HOME}/lib64
$ PATH=${CUDA_HOME}/bin:${PATH}
$ export PATH

Python安装和调试
1.
安装IDE运行环境
直接在Ubuntu软件中心搜索“spyder”即可安装。

2. iPython NoteBook
安装(选做)
$ sudo apt-get install -y ipython-notebook pandoc
启动(自动打开浏览器):
$ ipython notebook

三 安装BLAS(这里选择mkl
$ tar zxvf parallel_studio_xe_2016_update3.tgz
$ chmod a+x parallel_studio_xe_2016_update3 -R
进入目录
$ sudo sh install_GUI.sh

MKLCUDA的环境设置
1.
新建intel_mkl.conf, 并编辑:
$ sudo gedit /etc/ld.so.conf.d/intel_mkl.conf

/opt/intel/lib/intel64
/opt/intel/mkl/lib/intel64

2.
新建cuda.conf,并编辑:
$ sudo gedit /etc/ld.so.conf.d/cuda.conf

/usr/local/cuda/lib64
/lib

3.
完成lib文件的链接操作,执行:
$ sudo ldconfig -v

五 安装OpenCV3.0
切换到文件夹,安装依赖项
$ sudo sh Ubuntu/dependencies.sh

切换到目录Ubuntu/3.0/
$ sudo sh opencv3_0_0.sh
保证网络畅通,时间较长,请耐心等待

六 安装其他依赖项
$ tar zxvf glog-0.3.3.tar.gz
$ ./configure
$ make
$ sudo make install

$ sudo apt-get install -y libprotobuf-dev libleveldb-dev libsnappy-devlibopencv-dev libboost-all-dev libhdf5-serial-dev libgflags-devlibgoogle-glog-dev liblmdb-dev protobuf-compiler protobuf-c-compilerprotobuf-compiler

七 安装Caffe并测试
1.
安装pycaffe必须的一些依赖项
$ sudo apt-get install -y python-numpy python-scipy python-matplotlibpython-sklearn python-skimage python-h5py python-protobuf python-leveldbpython-networkx python-nose python-pandas python-gflags cython ipython

2.
安装配置nVidia cuDNN
a.
安装前请官网下载最新的cuDNN(cudnn-7.0-linux-x64-v4.0-prod)
$ sudo cp include/cudnn.h /usr/local/include
$ sudo cp lib64/libcudnn.* /usr/local/lib

b.
链接cuDNN的库文件
$ sudo ln -sf /usr/local/lib/libcudnn.so.4.0.7/usr/local/lib/libcudnn.so.4
$ sudo ln -sf /usr/local/lib/libcudnn.so.4 /usr/local/lib/libcudnn.so
$ sudo ldconfig -v

3.
编译

修改Makefile.config配置文件:


a. 启用CUDNN,去掉"#"

USE_CUDNN := 1

b. 启用GPU,添加注释"#"

# CPU_ONLY := 1

c. 配置一些引用文件(增加部分主要是解决新版本下,HDF5的路径问题)

INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include /usr/lib/x86_64-linux-gnu/hdf5/serial/include

LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib /usr/lib/x86_64-linux-gnu/hdf5/serial

d. 启用Intel Parallel Studio XE 2016

BLAS := mkl

e. 配置路径,实现caffe对Python和Matlab接口的支持

PYTHON_LIB := /usr/local/lib

MATLAB_DIR := /usr/local/MATLAB/R2014a(选做)

执行编译

$ make all -j8
$ make test -j8
$ make runtest -j8

编译PythonMatlab用到的caffe文件
$ make pycaffe -j8
$ make matcaffe -j8
(选做)


1
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:5835次
    • 积分:158
    • 等级:
    • 排名:千里之外
    • 原创:7篇
    • 转载:3篇
    • 译文:0篇
    • 评论:0条
    文章分类