关闭

QDU 礼上往来(错排公式)

标签: 错排公式
347人阅读 评论(0) 收藏 举报
分类:

礼上往来

发布时间: 2016年1月3日 19:13   最后更新: 2016年1月3日 19:15   时间限制: 1000ms   内存限制: 128M

每当节日来临,女友众多的xxx总是能从全国各地的女友那里收到各种礼物。

有礼物收到当然值得高兴,但回礼确是件麻烦的事!

无论多麻烦,总不好意思收礼而不回礼,那也不是xxx的风格。

  

现在,即爱面子又抠门的xxx想出了一个绝妙的好办法:他准备将各个女友送来的礼物合理分配,再回送不同女友,这样就不用再花钱买礼物了!

  

假设xxx的n个女友每人送他一个礼物(每个人送的礼物都不相同),现在他需要合理安排,再回送每个女友一份礼物,重点是,回送的礼物不能是这个女友之前送他的那个礼物,不然,xxx可就摊上事了,摊上大事了......

  

现在,xxx想知道总共有多少种满足条件的回送礼物方案呢? 

输入数据第一行是个正整数T,表示总共有T组测试数据(T <= 100); 每组数据包含一个正整数n,表示叽叽哥的女友个数为n( 1 <= n <= 100 )。

请输出可能的方案数,因为方案数可能比较大,请将结果对10^9 + 7 取模后再输出。 每组输出占一行。


一道超水的套公式题,我以为是个思维题,想了好久好久好久。。。最后实在忍不住了,查了查,原来是错排公式:

转自别人对错排公式的理解:

编号为 1 , 2 ,……, n 的 n 
个元素排成一列,若每个元素所处位置的序号都与它的编号不同,则称这个排列为 n 
个不同元素的一个错排。记 n 个不同元素的错排总数为 f(n) ,则

f(n) = n![1-1/1!+1/2!-1/3!+……+(-1)^n*1/n!]( 1 )

本文从另一角度对这个问题进行一点讨论。

1. 一个简单的递推公式

n 个不同元素的一个错排可由下述两个步骤完成:

第一步,“错排” 1 号元素(将 1 号元素排在第 2 至第 n 个位置之一),有 n - 1 
种方法。

第二步,“错排”其余 n - 1 个元素,按如下顺序进行。视第一步的结果,若 1 
号元素落在第 k 个位置,第二步就先把 k 号元素“错排”好, k 
号元素的不同排法将导致两类不同的情况发生:( 1 ) k 号元素排在第 1 
个位置,留下的 n - 2 个元素在与它们的编号集相等的位置集上“错排”,有 f(n -2) 
种方法;( 2 ) k 号元素不排第 1 个位置,这时可将第 1 个位置“看成”第 k 
个位置,于是形成(包括 k 号元素在内的) n - 1 个元素的“错排”,有 f(n - 1) 
种方法。据加法原理,完成第二步共有 f(n - 2)+f(n - 1) 种方法。

根据乘法原理, n 个不同元素的错排种数

f(n) = (n-1)[f(n-2)+f(n-1)] (n>2) 。


#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
const int maxn = 105;
const int mm = 1e9 + 7;
long long a[maxn];
int main()
{
    int t,n;
    scanf("%d",&t);
    a[1] = 0; a[2] = 1;
    for(int i = 3; i <= maxn; i++)
        a[i] = (i-1)*(a[i-1]+a[i-2])%mm;
    while(t--)
    {
        scanf("%d",&n);
        cout << a[n] << endl;
    }
    return 0;
}


1
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:140209次
    • 积分:5950
    • 等级:
    • 排名:第4427名
    • 原创:424篇
    • 转载:79篇
    • 译文:0篇
    • 评论:43条
    最新评论