密码学—如何随机生成大素数以及Miller Rabin素性检测方法

素数被利用在密码学上,所谓的公钥就是将想要传递的信息在编码时加入质数,编码之后传送给收信人,任何人收到此信息后,若没有此收信人所拥有的密钥,则解密的过程中(实为寻找素数的过程),将会因为找质数的过程(分解质因数)过久,使即使取得信息也会无意义
给出两个大素数,很容易就能将它们两个相乘。但是,给出它们的乘积,找出它们的因子就显得不是那么容易了。这就是许多现代密码系统的关键所在。如果能够找到解决整数分解问题的快速方法,几个重要的密码系统将会被攻破,包括RSA公钥算法和Blum Blum Shub随机数发生器。尽管快速分解是攻破这些系统的方法之一,仍然会有其它的不涉及到分解的其它方法。所以情形完全可能变成这样:整数分解问题仍然是非常困难,这些密码系统却是能够很快攻破。有的密码系统则能提供更强的保证:如果这些密码系统被快速破解(即能够以多项式时间复杂度破解),则可以利用破解这些系统的算法来快速地(以多项式时间复杂度)分解整数。换句话说,破解这样的密码系统不会比整数分解更容易。这样的密码系统包括 Rabin密码系统(RSA的一个变体),以及 Blum Blum Shub 随机数发生器。
如何生成一个随机的大素数?

  • 伪素数
    伪素数生成过程如下:
    ① 随机选取一个大奇数n
    ②将从2开始的53个素数排列成数组,作为工具a[i]
    ③令i=0,计算x=n%a[i]
    ④ 判断,若x=0,说明n显然是合数,回到步骤1。若不等于0,说明暂且可以 认为n是素性的,进行步骤5。
    ⑤检测n%其他的a[i]. 当i=52,则将n视为一个伪素数,然后作为素数生成部分的结果。
    以上是生成过程,举例为前53个素数。其实在真正的实际应用之中,应当将所有2000以内的素数都纳入工具。

  • 素性检测
    对伪素数进行素性检测,如何不是素数,重新生成伪素数。
    Miller-Rabin算法是目前主流的基于概率的素数测试算法,在构建密码安全体系中占有重要的地位。通过比较各种素数测试算法和对Miller-Rabin算法进行的仔细研究,证明在计算机中构建密码安全体系时, Miller-Rabin算法是完成素数测试的最佳选择。通过对Miller-Rabin 算 法底层运算的优化,可以取得较以往实现更好的性能。随着信息技术的发展、网络的普及和电子商务的开展, 信息安全逐步显示出了其重要性。信息的泄密、伪造、篡改 等问题会给信息的合法拥有者带来重大的损失。在计算机中构建密码安全体系可以提供4种最基本的保护信息安全的服 务:保密性、数据完整性、鉴别、抗抵赖性,从而可以很大 程度上保护用户的数据安全。在密码安全体系中,公开密钥 算法在密钥交换、密钥管理、身份认证等问题的处理上极其有效,因此在整个体系中占有重要的地位。目前的公开密钥 算法大部分基于大整数分解、有限域上的离散对数问题和椭 圆曲线上的离散对数问题,这些数学难题的构建大部分都需 要生成一种超大的素数,尤其在经典的RSA算法中,生成的素数的质量对系统的安全性有很大的影响。
    Miller-Rabin算法是Fermat算法的一个变形改进,它的理论基础是由Fermat定理引申而来。
      Fermat 定理: n是一个奇素数,a是任何整数(1≤ a≤n-1) ,则 a^(n-1)≡1(mod n)。
      Miller-Rabin 算法的理论基础:如果n是一个奇素数, 将n-1表示成2^s*r的形式(r是奇 数),a 是和n互素的任何整数, 那么a^r≡1(mod n) 或者对某个j(0≤j ≤s -1, j∈Z) 等式 a^(2^j*r) ≡-1(mod n)成立。 这个理论是通过一个事实经由Fermat定理推导而来: n是一个奇素数,则方程x^2 ≡ 1 mod n只有±1两个解。
      

  • 算法实现

      Miller-Rabin(n,t)
      输入:一个大于3的奇整数n和一个大于等于1的安全参 数t(用于确定测试轮数)。
      输出:返回n是否是素数(概率意义上的,一般误判概率小于(1/2)80即可) 。
      1、将n-1表示成2sr,(其 中 r是奇数)
      2、 对i从1到 t 循环作下面的操作:
      2.1选择一个随机整数a(2≤a ≤n-2)
      2.2计算y ←ar mod n
      2.3如果y≠1并且y ≠n-1作下面的操作,否则转3:
      2.3.1 j←1;
      2.3.2 当j≤s-1 并且y≠n-1循环作下面操作,否则跳到 2.3.3:
      {计算y ←y2 mod n;
      如果 y=1返回 合数 ;
      否则 j←j+1; }
      2.3.3如果y ≠n-1 则返回 合数 ;
      3、返回素数。
      

#include <iostream>
#include <stdlib.h>
#include <time.h>
#include <math.h>
using namespace std;

// 生成伪素数
const int MAX_ROW = 50;
size_t Pseudoprime()
{
    bool ifprime = false;
    size_t a = 0;
    int arr[MAX_ROW];   //数组arr为{3,4,5,6...52}
    for (int i = 0; i<MAX_ROW; ++i)
    {
        arr[i] = i+3;
    }
    while (!ifprime)
    {
        srand((unsigned)time(0));
        ifprime = true;
        a = (rand()%10000)*2+3; //生成一个范围在3到2003里的奇数
        for (int j = 0; j<MAX_ROW; ++j)
        {
            if (a%arr[j] == 0)
            {
                ifprime = false;
                break;
            }
        }
    }
    return a;
}

size_t  repeatMod(size_t base, size_t n, size_t mod)//模重复平方算法求(b^n)%m
{
    size_t a = 1;
    while(n)
    {
        if(n&1)
        {
            a = (a*base)%mod;
        }
        base = (base*base)%mod;
        n = n>>1;
    }
    return a;
}

//Miller-Rabin素数检测
bool rabinmiller(size_t n, size_t k)
{

    int s = 0;
    int temp = n-1;      
    while ((temp & 0x1) == 0 && temp)
    {
        temp = temp>>1;
        s++;
    }   //将n-1表示为(2^s)*t
    size_t t = temp;

    while(k--)  //判断k轮误判概率不大于(1/4)^k
    {
        srand((unsigned)time(0));
        size_t b = rand()%(n-2)+2; //生成一个b(2≤a ≤n-2)

        size_t y = repeatMod(b,t,n); 
        if (y == 1 || y == (n-1))
            return true;
        for(int j = 1; j<=(s-1) && y != (n-1); ++j)
        {
            y = repeatMod(y,2,n);
            if (y == 1)
                return false;
        }
        if ( y != (n-1))
            return false;
    }
    return true;
}

用简单的方法判断正确性

//简单的素数检测方法
bool isprime(size_t n)
{
    if( n== 2)
    return true;
    for(int i = 2; i <=(int)sqrt((float)n) ; ++i)
    {
        if (n%i == 0)
            return false;
    }
    return true;
}

int main()
{
    size_t ret = Pseudoprime();
    cout<<ret<<endl;

    if (rabinmiller(ret,10))
        cout<<ret<<"是素数"<<endl;
    else
        cout<<ret<<"不是素数"<<endl;

    if (isprime(ret))
        cout<<ret<<"是素数"<<endl;
    else
        cout<<ret<<"不是素数"<<endl;

    return 0;
}

这里写图片描述
这里写图片描述

  • 20
    点赞
  • 121
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
生成大素数是一个非常复杂的问题,需要使用复杂的算法来实现。常用的算法有 Miller-Rabin 算法、AKS 算法、埃拉托斯特尼筛法等。这里我以 Miller-Rabin 算法为例来介绍一下如何生成大素数Miller-Rabin 算法是一种概率素性测试算法,它可以在很高的概率上判断一个数是否是素数。具体步骤如下: 1. 首先,选择一个大于 2 的奇数 n,将 n - 1 分解成 2^s * d 的形式,其中 d 是一个奇数。 2. 选择一个在区间 [2, n - 2] 内的随机整数 a。 3. 计算 a^d mod n,如果结果为 1 或 n - 1,则 n 可能是素数,进入下一轮测试。否则,继续进行以下步骤。 4. 对于每个 r(0 <= r <= s - 1),计算 a^(2^r * d) mod n,如果结果为 n - 1,则 n 可能是素数,进入下一轮测试。否则,继续进行下一轮测试。 5. 如果上述步骤都没有找到 n 是合数的证据,则 n 可能是素数。 6. 重复进行 k 次测试,如果每一次测试都没有找到 n 是合数的证据,则 n 在很高的概率上是素数。 下面是一个使用 Miller-Rabin 算法生成大素数的 Python 代码: ```python import random def is_prime(n, k=10): if n == 2 or n == 3: return True if n <= 1 or n % 2 == 0: return False # 分解 n - 1 s, d = 0, n - 1 while d % 2 == 0: s += 1 d //= 2 # 进行 k 次测试 for i in range(k): a = random.randint(2, n - 2) x = pow(a, d, n) if x == 1 or x == n - 1: continue for r in range(s - 1): x = pow(x, 2, n) if x == n - 1: break else: return False return True def generate_prime(): while True: n = random.randint(2**1023, 2**1024 - 1) if is_prime(n): return n ``` 这个代码使用了 1024 位的随机数生成一个大素数,可以根据需要修改位数。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值