【第22期】观点:IT 行业加班,到底有没有价值?

5.JVM三大性能调优参数:-Xms -Xmx -Xss

原创 2016年05月31日 11:37:06

1.-Xss是对每个线程stack大小的调整。直接影响对方法的调用次数

测试结果:


测试代码:

package com.dt.spark.jvm.basics;


public class HelloStackOverFlow {
private static int counter;


  


    public void count() {


       System.out.println("the stack frame depth is : "+(++counter));


       count();


    }


public static void main(String[] args) {
//-verbose:gc -Xms10M -Xmx10M -Xss105k -XX:+PrintGCDetails
System.out.println("HelloStackOverFlow");
HelloStackOverFlow helloStackOverFlow = new HelloStackOverFlow();
try {
helloStackOverFlow.count();
} catch (Exception e) {
System.out.println("the stack frame depth is : "+(++counter));
e.printStackTrace();
throw e;
}

}


}

2.-Xms -Xmx 是对heap的调整

-Xms初始堆大小

-Xmx最大堆大小,一般情况下这两个值设为相同大小。因为如果不相同且内存不够用时会发生内存抖动现象,非常影响程序运行。

测试结果:


测试代码:

package com.dt.spark.jvm.basics;


import java.util.ArrayList;
import java.util.List;


class Person{ }


public class HelloHeapOutOfMemory {

public static void main(String[] args) {
System.out.println("HelloHeapOutOfMemory");
List<Person> persons = new ArrayList<Person>();
int counter = 0;
      while(true){
      persons.add(new Person());
      System.out.println("Instance: " + (++counter));
      }


}


}

版权声明: 举报

相关文章推荐

JVM调优总结 -Xms -Xmx -Xmn -Xss

原始连接:http://hi.baidu.com/linjk03/blog/item/4b48d738c09f7ef4b211c79c.html (引用)

JVM 三大性能调优参数-Xms -Xmx -Xss

-Xss规定了每个线程堆栈的大小。一般情况下256K是足够了。影响了此进程中并发线程数大小。 -Xms初始的Heap的大小。 -Xmx最大Heap的大小。 在很多情况下,-Xms和-Xmx设置成一样...

欢迎关注CSDN程序人生公众号

关注程序员生活,汇聚开发轶事。

Bea Weblogic 8.1 SP5 性能优化

一、前言本文档针对OOP8生产环境,如果没有特别指出,则适用于所有服务器。 基于RedHat Enterprise Linux 4 Update 1操作系统。 加粗斜体表示可以直接运行的命令。 下划线表示文件的内容。 二、JVM选型由于采用了Bea Weblogic 8.1 SP5,根据Bea官方建议,基于x86系列的32位操作系统,建议采用Bea JRockit JVM,以获得最佳的执行性能。 JRockit是一个自

JVM垃圾回收分代机制及性能调优

登录 | 注册 Better Me的博客 Better Me的博客 目录视图摘要视图订阅 ...

JVM内存模型与性能调优

Java是一门面向对象的编程语言,用对象来定义,描述和操作一切。对象数据存储在计算机内存中,Java的内存模型到底是个什么样子,让Java引为自豪的垃圾回收器又是如何工作的,如何针对JVM的内存管理进行性能调优,笔者将通过本文带您揭开这些Java世界深处不为人知的内幕。  (本文系作者原创,请尊重作者的权利。本文欢迎转载,如转载必须注明作者及出处!)  文章导航    堆内存(Heap)  垃圾
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)