关闭

aoj 600 数字游戏

149人阅读 评论(0) 收藏 举报
分类:

题目链接:http://icpc.ahu.edu.cn/OJ/Problem.aspx?id=600


题目描述:

Description
cxlove对数字情有独钟,最近又开始玩一个有趣的数字游戏。
首先我们定义一种Lucky number:最高位为1的数字(10进制)。
接下来,会给你n个区间,[Li,Ri]
随机从每一个区间内取出1个整数。
问取出的这n个数中至少有K%是Lucky number的概率是多少。

Input
一个整数 T,表示T组数据。(1<=T<=50)
一个整数n,表示区间的个数 (1<=n<=1000)
接下来n行,每一行两个整数Li,Ri表示区间[Li,Ri],并且保证(1<=Li<=Ri<=10^18)
最后一行是一个整数k (0<=k<=100)

Output
一个实数,表示至少有k%是Lucky Number的概率,小数点后保留6位。

Sample Input
Original Transformed
2
1
1 2
50
2
1 2
9 11
50

Sample Output
Original Transformed
0.500000
0.833333

Source
安徽大学第五届ACM/ICPC程序设计竞赛 现场赛


解题思路:转自http://blog.csdn.net/j_sure/article/details/41624065

警示1:整数的n次方,再也不要用自带的pow()函数。自己写!心情好还能写个快速幂。因为自带的pow()函数是double类型的,精度损失非常大

警示2:区间右端点减去区间左端点,左端点要先减去1。防止左端点被减掉。

警示3:一定要根据dp数组的状态描述仔细地进行初始化。

设dp[i][j]表示前i个区间选到了j个幸运数字的概率。

那么dp[0][0] = 1(0个区间一定是0个幸运数字)

设每个区间选择到幸运数字的概率是v[i]

状态转移方程为:

dp[i][j] = dp[i-1][j-1] * v[] + dp[i-1][j] * (1-v[])

要么是第i个区间选择到了幸运数字,要么是前i-1个区间已经选够了j个幸运数字。

由此我们需要初始化dp[i][0]。因为1个幸运数字都没有选到,所以一路乘即可。

得到至少k%个幸运数字其实就是n * k%想上取整而已。设至少p个。之后把dp[][p] + dp[][p+1] + ... + dp[][n]即可。

现在剩下的问题是预处理区间内幸运数字的个数。这样就可以尽快查询到。(10^18很大啊)。

0~9:1个

10~99:10个

100~999:100个

......

取出左右端点将它们“剪裁”成上述片段即可。这里有用到前缀和。


AC代码:

#include<iostream>
#include<cstring>
#include<cmath>
#include<cstdlib>
#include<cstdio>
#include<algorithm>
using namespace std;
long long int T,n,k,num;
double dp[1005][1005];
double rate[1005];
long long int l,r;
long long int ll[20];//ll[i]代表最长i位数字所拥有的以1开头的数字的个数

long long int power(long long int x,long long int y)//x^y
{
    long long int j=1;
    while(y--)
        {
            j*=x;
        }
    return j;
}

void Init()
{
    ll[0]=0;
    for(long long int i=1;i<=18;i++)
    {
        ll[i]=power(10,i-1);
        ll[i]+=ll[i-1];
    }
}

long long int getnum(long long int x)
{
    char s[25];
    sprintf(s,"%lld",x);
    int len=strlen(s);
    if(len==1)
        {
            return x?1:0;
        }
    if(s[0]=='1')
        return x-power(10,len-1)+1+ll[len-1];
    else
        return ll[len];
}

//用这个来求解1开头的数字的个数会超时
/*long long int zg(long long int k)
{
    long long int p=k;
    long long int w=0,q=1;
    while(p)
    {
        w++;
        p/=10;
    }
    for(long long int i=1;i<=w-1;i++)
        q*=10;
    if(k/q==1)
        return 1;
    else
        return 0;
}*/

int main()
{
    Init();
    scanf("%lld",&T);
    while(T--)
    {
        //memset(rate,0,sizeof(rate));
        scanf("%lld",&n);
        for(long long int i=1;i<=n;i++)
        {
            scanf("%lld%lld",&l,&r);
            num=getnum(r)-getnum(l-1);
            rate[i]=1.0*num/(r-l+1);
        }
        scanf("%lld",&k);
        memset(dp,0,sizeof(dp));
        dp[0][0]=1;
        for(long long int i=1;i<=n;i++)
            dp[i][0]=dp[i-1][0]*(1.0-rate[i]);
        for(long long int i=1;i<=n;i++)
        {
            for(long long int j=1;j<=i;j++)
            {
                dp[i][j]+=dp[i-1][j-1]*rate[i]+dp[i-1][j]*(1.0-rate[i]);
            }
        }
        double ans=0.0;
        k=ceil(1.0*k/100.0*n);//ceil函数是求大于等于本身的最小整数
        for(long long int i=k;i<=n;i++)
            ans+=dp[n][i];
        printf("%.6f\n",ans);
    }
    return 0;
}


1
0

猜你在找
【直播】机器学习&数据挖掘7周实训--韦玮
【套餐】系统集成项目管理工程师顺利通关--徐朋
【直播】3小时掌握Docker最佳实战-徐西宁
【套餐】机器学习系列套餐(算法+实战)--唐宇迪
【直播】计算机视觉原理及实战--屈教授
【套餐】微信订阅号+服务号Java版 v2.0--翟东平
【直播】机器学习之矩阵--黄博士
【套餐】微信订阅号+服务号Java版 v2.0--翟东平
【直播】机器学习之凸优化--马博士
【套餐】Javascript 设计模式实战--曾亮
查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:14554次
    • 积分:1381
    • 等级:
    • 排名:千里之外
    • 原创:129篇
    • 转载:7篇
    • 译文:0篇
    • 评论:6条
    最新评论