模拟 Cantor表

原创 2016年08月30日 14:08:52

题目链接:http://codevs.cn/problem/1083/


题目描述:

题目描述 Description

现代数学的著名证明之一是Georg Cantor证明了有理数是可枚举的。他是用下面这一张表来证明这一命题的: 1/1 1/2 1/3 1/4 1/5 … 2/1 2/2 2/3 2/4 … 3/1 3/2 3/3 … 4/1 4/2 … 5/1 … … 我们以Z字形给上表的每一项编号。第一项是1/1,然后是1/2,2/1,3/1,2/2,…

输入描述 Input Description

整数N(1≤N≤10000000)

输出描述 Output Description

表中的第N项

样例输入 Sample Input

7

样例输出 Sample Output

1/4


题目分析:

纯模拟,不过注意一下这里的n范围,我开到10000000会爆,所以只开到100005,但是也过了


AC代码:

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
long long int  v[100005][4];
long long int n;

void Init1()
{
    long long int i;
    v[1][0]=1;//第1个值
    v[1][1]=1;//行
    v[1][2]=1;//列
    v[1][3]=1;//第二个值

    v[2][0]=1;
    v[2][1]=1;
    v[2][2]=2;
    v[2][3]=2;

    for(i=3;i<=100000;i++)
    {
        while(v[i-1][2]!=1)//不是第一列
        {
            v[i][0]=v[i-1][0]+1;
            v[i][1]=v[i-1][1]+1;
            v[i][2]=v[i-1][2]-1;
            v[i][3]=v[i-1][3]-1;
            i++;
        }
        if(v[i-1][2]==1)
        {
            v[i][0]=v[i-1][0]+1;
            v[i][1]=v[i-1][1]+1;
            v[i][2]=v[i-1][2];
            v[i][3]=v[i-1][3];
            i++;
            v[i][0]=v[i-1][0]-1;
            v[i][1]=v[i-1][1]-1;
            v[i][2]=v[i-1][2]+1;
            v[i][3]=v[i-1][3]+1;
        }
        while(v[i-1][1]!=1)
        {
            v[i][0]=v[i-1][0]-1;
            v[i][1]=v[i-1][1]-1;
            v[i][2]=v[i-1][2]+1;
            v[i][3]=v[i-1][3]+1;
            i++;
        }
        if(v[i-1][1]==1)
        {
            v[i][0]=v[i-1][0];
            v[i][1]=v[i-1][1];
            v[i][2]=v[i-1][2]+1;
            v[i][3]=v[i-1][3]+1;
            i++;
            v[i][0]=v[i-1][0]+1;
            v[i][1]=v[i-1][1]+1;
            v[i][2]=v[i-1][2]-1;
            v[i][3]=v[i-1][3]-1;
        }
    }

}
int main()
{
    Init1();
    scanf("%lld",&n);
    printf("%lld/%lld\n",v[n][0],v[n][3]);
    return 0;
}


版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

CODE[VS] NO.1083 Cantor表(类似蛇形矩阵,模拟,找规律)

题目描述 Description 现代数学的著名证明之一是Georg Cantor证明了有理数是可枚举的。他是用下面这一张表来证明这一命题的: 1/1 1/2 1/3 1/4 1/5 … 2/1...

经典算法之cantor数表

  • 2011-07-08 23:16
  • 552B
  • 下载

Cantor表

现代数学的著名证明之一是Georg Cantor证明了有理数是可枚举的。他是用下面这一张表来证明这一命题的: 1/1 1/2 1/3 1/4 1/5 … 2/1 2/2 2/3 2/4...

Cantor表

Cantor表 1999年NOIP全国联赛普及组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 白银 Silver 题解 题目描述 Description 现代数学的著...

《程序员》2008年第1期"算法擂台" - Cantor表解答

/* Name: Cantor Table Author: blackboy @ S.N.P Date: 08-01-08 23:08 Description: Coded b...

Cantor表

1083 Cantor表   1999年NOIP全国联赛普及组  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 白银 Silver 题解  查看...

codeVS 1083 cantor表(1999年NOIP全国联赛普及组)

时间限制:1s 空间限制:128000KB 题目等级:白银silver 题目描述Description 现代数学的著名证明之一是Georg Cantor证明了有理数是可枚举的。他是用下面这一张表来证明...

Cantor表第N个值的求解

题目描述: 现代数学的著名证明之一是Georg Cantor证明了有理数是可枚举的。他是用下面这一张表来证明这一命题的: 1/1 1/2 1/3 1/4 1/5 … 2/1 2/2 2/3 2/4 ...

Wikioi 天梯 Cantor表(1083)

现代数学的著名证明之一是Georg Cantor证明了有理数是可枚举的。他是用下面这一张表来证明这一命题的: 1/1 1/2 1/3 1/4 1/5 … 2/1 2/2 2/3 2/4 … 3/1 3...

cantor展开

  • 2014-10-30 15:15
  • 679B
  • 下载
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)