HDU 1003 MAX SUM

原创 2016年08月28日 19:52:37

Max Sum

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 218423    Accepted Submission(s): 51573


Problem Description
Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14.
 

Input
The first line of the input contains an integer T(1<=T<=20) which means the number of test cases. Then T lines follow, each line starts with a number N(1<=N<=100000), then N integers followed(all the integers are between -1000 and 1000).
 

Output
For each test case, you should output two lines. The first line is "Case #:", # means the number of the test case. The second line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end position of the sub-sequence. If there are more than one result, output the first one. Output a blank line between two cases.
 

Sample Input
2 5 6 -1 5 4 -7 7 0 6 -1 1 -6 7 -5
 

Sample Output
Case 1: 14 1 4 Case 2: 7 1 6
 

Author
Ignatius.L
 

Recommend
We have carefully selected several similar problems for you:  1176 1087 1069 1058 1203 
 


题目大意:给定一个序列,求最大连续子序列之和。输入n和n个数字,每个案例输出最大连续子序列之和,和这个序列的起点和终点。

题目思路:n为100000,先想到dp,dp时间复杂度为n,所以不会超时。


求最大连续子序列之和模板:

if(dp[i-1]>0)
  dp[i]=dp[i-1]+a[i];
else
  dp[i]=a[i];

然后我们考虑起点和终点:当dp[i]=a[i]时,这时是一个新序列的开始,所以更新起点和终点。当dp[i]=dp[i-1]+a[i]时,只需要更新终点即可。


#include<stdio.h>
#include<iostream>
#include<math.h>
#include<string.h>
#define N 100010
using namespace std;

int a[N],dp[N];

int main()
{
    int T,t=1;
    scanf("%d",&T);
    while(T--)
    {
        int n,s,e,i,e1,s1;
        scanf("%d",&n);
        for(i=1;i<=n;i++)
           scanf("%d",&a[i]);

        memset(dp,0,sizeof(dp));
        dp[0]=-1001;           //因为序列的最小值为-1000,所以为了确保不会取到dp[0],就将dp[0]设为-1001
        int max1=dp[0];
        for(i=1;i<=n;i++)
        {
            if(dp[i-1]>=0)          //延续就序列,更新终点
            {
                dp[i]=dp[i-1]+a[i];
                e1=i;

            }
            else
            {
                dp[i]=a[i];           //新序列,更新起点和终点
              {
                        s1=i;
                        e1=i;
              }
            }
            if(dp[i]>max1)           //更新最大值和结果
            {
                max1=dp[i];
                s=s1;
                e=e1;
            }
}
        
        printf("Case %d:\n",t);
        printf("%d %d %d\n",max1,s,e);
        if(T!=0)
            printf("\n");
        t++;
    }
    return 0;
}

妈妈咪呀,我的表情包出了故障,不见了,不见了,好可怕,那就只有我百度来的表情包了,可是我qq盗来的表情包更可爱啊,啊啊啊,怎么办啊……



版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

HDU 1003 Max Sum 解题报告

原题: Max Sum Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) To...

hdu1003 Max Sum

初来乍到,动态规划也是刚刚接触。刚开始用暴力法,Time limit…… 在网上搜了代码。大多是只说是动态规划经典问题、求最大子序列和,然后就是一串代码。最好的就是带了几行注释…没有太多通俗的解释…...

HDU-1003-Max Sum

Max Sum Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Su...

HDU 1003 Max Sum【区间最大值】题解

HDU 1003 Max Sum【区间最大值】题解

hdu 1003 Max Sum 去掉数组后的方法

Max Sum Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 65536/32768K (Java/Other) Total Su...

Max Sum (hdu 1003 简单DP水过)

题意:给出n个数的序列,求出最大的子串和,并输出起点和终点。 思路:dp[i]表示以i为结尾的最大子串和。

HDU 1003 Max Sum(最大区间和,DP)

题目大意: 输入n个整数,求这些整数中 ”连续和“ 最大的区间。输出最大的和以及区间的始末位置。 解题思路: 用a数组记录每个整数,用dp数组记录每个数字的最大和的值,设当前的位置为i,当dp[i-1...

HDU 1003 Max Sum + 单调队列优化dp解法

首先贴上经典dp解法,  以i结尾的最大子段和 d[i] = max(d[i-1]+a[i], a[i]). 但这不是本文的主要目的. 代码 O(n) : #include #include #...

【最大连续子序列和dp】hdu 1003 Max Sum

http://acm.hdu.edu.cn/showproblem.php?pid=1003 最大连续子序列和,dp[i] = max(dp[i-1]+a[i],a[i]),注意维护st /* ...

HDU 1003 — Max Sum

原题:http://acm.hdu.edu.cn/showproblem.php?pid=1003 题意:求最大和的最长子序列。 思路:dp[i]表示第1个数到第i个数的最大子序列和。 每次当我们...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)