BZOJ3456:城市规划(EGF+FFT/CDQ分治+FFT)

15 篇文章 0 订阅
6 篇文章 0 订阅

传送门

题意:无向连通图的计数。

题解:
首先一个简单无向图由若干简单连通图拼接而成。

一个简单无向图的指数级生成函数为:

G(x)=i=12(i2)xii!

设一个简单连通图的指数级生成函数为:

F(x)=i=1nCnxii!

那么可以推导出:

G(x)=i=0(F(x))ii!

相当于由若干简单连通图生成了一个简单无向图, i 个简单连通图拼接会多算i!次。

由泰勒展开可得:

G(x)=eF(x)

进一步地,有:

F(x)=lnG(x)

对两边同时求导,得:
F(x)=G(x)G(x)

把这个式子放在 mod(n+1) 意义下计算即可。

#include<bits/stdc++.h>
using namespace std;
const int Mod=1004535809;
const int G=3,Maxn=5e5+50;
inline int power(int a,int b){
    int rs=1;
    for(;b;b>>=1,a=1ll*a*a%Mod)if(b&1)rs=1ll*rs*a%Mod;
    return rs;
}
int tp[Maxn],tp2[Maxn];
struct FFT{
    int pw[Maxn],pos[Maxn],k;
    inline void dft(int *A,int len){
        pw[0]=1;int tt=power(G,(Mod-1)/len);
        for(int i=1;i<len;i++)pw[i]=1ll*pw[i-1]*tt%Mod;
        for(int i=1;i<len;i++)pos[i]=(i&1)?((pos[i>>1]>>1)^(len>>1)):(pos[i>>1]>>1);
        for(int i=1;i<len;i++)if(pos[i]>i)swap(A[pos[i]],A[i]);
        for(int bl=1;bl<len;bl<<=1){
            int tl=bl<<1,ct=len/tl,wn=pw[ct];
            for(int p=0;p<len;p+=tl){
                int w=1;
                for(int j=0;j<bl;j++){
                    int &a=A[p+j],&b=A[p+j+bl],t=1ll*b*w%Mod;
                    b=(a-t+Mod)%Mod;
                    a=(a+t)%Mod;
                    w=1ll*w*wn%Mod;
                }
            }
        }
    }
    inline void calc_inv(int *A,int *B,int len){
        if(len==1){
            B[0]=power(A[0],Mod-2);
            return;
        }
        if(len!=1)calc_inv(A,B,len>>1);
        memcpy(tp,B,sizeof(int)*len);
        memcpy(tp2,A,sizeof(int)*len);
        int t=len<<1;
        dft(tp,t);dft(tp2,t);
        for(int i=0;i<t;i++){
            tp[i]=2ll*tp[i]%Mod-1ll*tp[i]*tp[i]%Mod*tp2[i]%Mod;
            tp[i]+=(tp[i]<0?Mod:0);
        }
        dft(tp,t);
        int rv=power(t,Mod-2);
        reverse(tp+1,tp+t);
        for(int i=0;i<len;i++){
            B[i]=1ll*tp[i]*rv%Mod;
        }
    }
}fft;
int n,A[Maxn],A_df[Maxn],inv_A[Maxn],fac[Maxn]; 
int main(){
    scanf("%d",&n);
    A[0]=A[1]=1;A_df[0]=1;
    fac[0]=1;
    for(int i=1;i<=n;i++)fac[i]=fac[i-1]*1ll*i%Mod;
    for(int i=2;i<=n;i++){
        A[i]=1ll*power(2,(1ll*i*(i-1)/2)%(Mod-1))%Mod;
        A[i]=1ll*A[i]*power(fac[i],Mod-2)%Mod;
        A_df[i-1]=1ll*A[i]*i%Mod;
    }
    int t=1;while(t<n)t<<=1;
    t<<=1;int tot=0;
    fft.calc_inv(A,inv_A,t/2);
    for(int i=0;i<n;i++){
        tot+=1ll*A_df[i]*inv_A[n-i-1]%Mod;
        tot-=(tot>Mod?Mod:0);
    }
    cout<<(1ll*tot*fac[n-1])%Mod<<endl;
}

当然,分治加FFT也是很支持的。具体可以看网上的推导

#include<bits/stdc++.h>
using namespace std;
const int Mod=1004535809;
const int G=3;
const int N=5e5+50;
inline int power(int a,int b){
    int rs=1;
    for(;b;b>>=1,a=1ll*a*a%Mod)
        if(b&1)rs=1ll*rs*a%Mod;
    return rs;
}
struct fft{
    int k,pos[N],w[N];
    inline void pre(int len){
        for(k=1;k<len;k<<=1);
        k<<=1;w[0]=1;
        int wn=power(G,(Mod-1)/k);
        for(int i=1;i<k;i++)w[i]=1ll*w[i-1]*wn%Mod;
        for(int i=1;i<k;i++)pos[i]=(pos[i>>1]>>1)|((i&1)?k>>1:0);
    }
    inline void dft(int *a){
        for(int i=1;i<k;i++)if(i>pos[i])swap(a[i],a[pos[i]]);
        for(int bl=1;bl<k;bl<<=1){
            int tl=bl<<1,wn=w[k/tl];
            for(int bg=0;bg<k;bg+=tl){
                int ws=1;
                for(int j=0;j<bl;++j){
                    int &A=a[bg+j],&B=a[bg+j+bl],t=1ll*B*ws%Mod;
                    B=(A-t+Mod)%Mod;
                    A=(A+t)%Mod;
                    ws=1ll*ws*wn%Mod;
                }
            }
        }
    }
    inline void mul(int *a,int *b,int *c){
        dft(a);dft(b);
        for(int i=0;i<k;i++)c[i]=1ll*a[i]*b[i]%Mod;
        dft(c);reverse(c+1,c+k);
        int rv=power(k,Mod-2);
        for(int i=0;i<k;i++)c[i]=1ll*c[i]*rv%Mod;
    }
}fft;
int n,pw[N],fac[N],inv_fac[N],a[N],b[N],f[N];
inline void solve(int l,int r){
    if(l==r){f[l]=(pw[l]-1ll*f[l]*fac[l-1]%Mod+Mod)%Mod;return;}
    int mid=(l+r)>>1;
    solve(l,mid);
    int len=r-l+1;fft.pre(len);
    a[0]=0;b[0]=0;
    for(int i=l;i<=mid;i++)a[i-l+1]=1ll*f[i]*inv_fac[i-1]%Mod;
    for(int i=1;i<=len;i++)b[i]=1ll*pw[i]*inv_fac[i]%Mod;
    for(int i=mid-l+2;i<=fft.k;i++)a[i]=0;
    for(int i=len+1;i<=fft.k;i++)b[i]=0;
    fft.mul(a,b,a);
    for(int i=mid+1;i<=r;i++)f[i]=(f[i]+a[i-l+1])%Mod;
    solve(mid+1,r);
}
int main(){
    scanf("%d",&n);
    int len=1;
    while(len<n)len<<=1;
    len<<=1;pw[0]=1;fac[0]=(inv_fac[0]=1);
    for(int i=1;i<=len;i++)pw[i]=power(2,(1ll*i*(i-1)/2)%(Mod-1));
    for(int i=1;i<=len;i++)fac[i]=1ll*fac[i-1]*i%Mod;
    for(int i=1;i<=len;i++)inv_fac[i]=power(fac[i],Mod-2);
    solve(1,n);
    cout<<f[n]<<endl;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值