中国剩余定理

中国剩余定理(CRT)的表述如下

 

设正整数两两互素,则同余方程组

 

                            

 

有整数解。并且在模下的解是唯一的,解为

 

                              

 

其中,而的逆元。

 

代码:

    int CRT(int a[],int m[],int n)  
    {  
        int M = 1;  
        int ans = 0;  
        for(int i=1; i<=n; i++)  
            M *= m[i];  
        for(int i=1; i<=n; i++)  
        {  
            int x, y;  
            int Mi = M / m[i];  
            extend_Euclid(Mi, m[i], x, y);  
            ans = (ans + Mi * x * a[i]) % M;  
        }  
        if(ans < 0) ans += M;  
        return ans;  
    }  


题目:http://poj.org/problem?id=1006

 

题意:人自出生起就有体力,情感和智力三个生理周期,分别为23,28和33天。一个周期内有一天为峰值,在这一

     天,人在对应的方面(体力,情感或智力)表现最好。通常这三个周期的峰值不会是同一天。现在给出三个日

     期,分别对应于体力,情感,智力出现峰值的日期。然后再给出一个起始日期,要求从这一天开始,算出最少

     再过多少天后三个峰值同时出现。

 

代码:

    #include <iostream>  
    #include <string.h>  
    #include <stdio.h>  
      
    using namespace std;  
      
    int a[4], m[4];  
      
    void extend_Euclid(int a, int b, int &x, int &y)  
    {  
        if(b == 0)  
        {  
            x = 1;  
            y = 0;  
            return;  
        }  
        extend_Euclid(b, a % b, x, y);  
        int tmp = x;  
        x = y;  
        y = tmp - (a / b) * y;  
    }  
      
    int CRT(int a[],int m[],int n)  
    {  
        int M = 1;  
        int ans = 0;  
        for(int i=1; i<=n; i++)  
            M *= m[i];  
        for(int i=1; i<=n; i++)  
        {  
            int x, y;  
            int Mi = M / m[i];  
            extend_Euclid(Mi, m[i], x, y);  
            ans = (ans + Mi * x * a[i]) % M;  
        }  
        if(ans < 0) ans += M;  
        return ans;  
    }  
      
    int main()  
    {  
        int p, e, i, d, t = 1;  
        while(cin>>p>>e>>i>>d)  
        {  
            if(p == -1 && e == -1 && i == -1 && d == -1)  
                break;  
            a[1] = p;  
            a[2] = e;  
            a[3] = i;  
            m[1] = 23;  
            m[2] = 28;  
            m[3] = 33;  
            int ans = CRT(a, m, 3);  
            if(ans <= d)  
                ans += 21252;  
            cout<<"Case "<<t++<<": the next triple peak occurs in "<<ans - d<<" days."<<endl;  
        }  
        return 0;  
    }  


 

普通的中国剩余定理要求所有的互素,那么如果不互素呢,怎么求解同余方程组?

 

这种情况就采用两两合并的思想,假设要合并如下两个方程

 

     

 

那么得到

 

      

 

在利用扩展欧几里得算法解出的最小正整数解,再带入

 

      

 

得到后合并为一个方程的结果为

 

       

 

这样一直合并下去,最终可以求得同余方程组的解。

 

题目:http://poj.org/problem?id=2891

 

代码:

  1.     #include <iostream>  
        #include <string.h>  
        #include <stdio.h>  
          
        using namespace std;  
        typedef long long LL;  
        const int N = 1005;  
          
        LL a[N], m[N];  
          
        LL gcd(LL a,LL b)  
        {  
            return b? gcd(b, a % b) : a;  
        }  
          
        void extend_Euclid(LL a, LL b, LL &x, LL &y)  
        {  
            if(b == 0)  
            {  
                x = 1;  
                y = 0;  
                return;  
            }  
            extend_Euclid(b, a % b, x, y);  
            LL tmp = x;  
            x = y;  
            y = tmp - (a / b) * y;  
        }  
          
        LL Inv(LL a, LL b)  
        {  
            LL d = gcd(a, b);  
            if(d != 1) return -1;  
            LL x, y;  
            extend_Euclid(a, b, x, y);  
            return (x % b + b) % b;  
        }  
          
        bool merge(LL a1, LL m1, LL a2, LL m2, LL &a3, LL &m3)  
        {  
            LL d = gcd(m1, m2);  
            LL c = a2 - a1;  
            if(c % d) return false;  
            c = (c % m2 + m2) % m2;  
            m1 /= d;  
            m2 /= d;  
            c /= d;  
            c *= Inv(m1, m2);  
            c %= m2;  
            c *= m1 * d;  
            c += a1;  
            m3 = m1 * m2 * d;  
            a3 = (c % m3 + m3) % m3;  
            return true;  
        }  
          
        LL CRT(LL a[], LL m[], int n)  
        {  
            LL a1 = a[1];  
            LL m1 = m[1];  
            for(int i=2; i<=n; i++)  
            {  
                LL a2 = a[i];  
                LL m2 = m[i];  
                LL m3, a3;  
                if(!merge(a1, m1, a2, m2, a3, m3))  
                    return -1;  
                a1 = a3;  
                m1 = m3;  
            }  
            return (a1 % m1 + m1) % m1;  
        }  
          
        int main()  
        {  
            int n;  
            while(scanf("%d",&n)!=EOF)  
            {  
                for(int i=1; i<=n; i++)  
                    scanf("%I64d%I64d",&m[i], &a[i]);  
                LL ans = CRT(a, m, n);  
                printf("%I64d\n",ans);  
            }  
            return 0;  
        }  


 

题目:http://acm.hdu.edu.cn/showproblem.php?pid=1573

 

分析:这个题由于数据范围小,那么直接可以通过枚举在这个数的最小公倍数范围内的所有数,找到最小的正整

     数解,然后后面的所有解都可以通过这个得到。

 

代码:

<span style="font-size:12px;">#include <iostream>  
#include <string.h>  
#include <stdio.h>  
  
using namespace std;  
const int N = 25;  
  
int a[N], b[N];  
  
int gcd(int a, int b)  
{  
    return b ? gcd(b, a % b) : a;  
}  
  
int main()  
{  
    int T;  
    cin>>T;  
    while(T--)  
    {  
        int n, m;  
        cin>>n>>m;  
        for(int i=0; i<m; i++)  
            cin>>a[i];  
        for(int i=0; i<m; i++)  
            cin>>b[i];  
        int lcm = 1;  
        for(int i=0; i<m; i++)  
            lcm = lcm / gcd(lcm, a[i]) * a[i];  
        bool f = 1;  
        for(int i=1; i<=lcm&&i<=n; i++)  
        {  
            f = 1;  
            for(int j=0; j<m; j++)  
            {  
                if(i % a[j] != b[j])  
                    f = 0;  
            }  
            if(f)  
            {  
                printf("%d\n",(n - i) / lcm + 1);  
                break;  
            }  
        }  
        if(f == 0)  
            printf("0\n");  
    }  
    return 0;  
}  
</span>

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值