关闭

Vijos P1008 篝火晚会(组合数学,置换群)

标签: vijosNOIP组合数学
203人阅读 评论(0) 收藏 举报
分类:
P1008篝火晚会

描述

佳佳刚进高中,在军训的时候,由于佳佳吃苦耐劳,很快得到了教官的赏识,成为了“小教官”。在军训结束的那天晚上,佳佳被命令组织同学们进行篝火晚会。一共有n个同学,编号从1到n。一开始,同学们按照1,2,……,n的顺序坐成一圈,而实际上每个人都有两个最希望相邻的同学。如何下命令调整同学的次序,形成新的一个圈,使之符合同学们的意愿,成为摆在佳佳面前的一大难题。

佳佳可向同学们下达命令,每一个命令的形式如下:

(b1, b2,... bm -1, bm)

这里m的值是由佳佳决定的,每次命令m的值都可以不同。这个命令的作用是移动编号是b1,b2,…… bm –1,bm的这m个同学的位置。要求b1换到b2的位置上,b2换到b3的位置上,……,要求bm换到b1的位置上。

执行每个命令都需要一些代价。我们假定如果一个命令要移动m个人的位置,那么这个命令的代价就是m。我们需要佳佳用最少的总代价实现同学们的意愿,你能帮助佳佳吗?

对于30%的数据,n <= 1000;

对于全部的数据,n <= 50000。

格式

输入格式

输入的第一行是一个整数n(3 <= n <= 50000),表示一共有n个同学。其后n行每行包括两个不同的正整数,以一个空格隔开,分别表示编号是1的同学最希望相邻的两个同学的编号,编号是2的同学最希望相邻的两个同学的编号,……,编号是n的同学最希望相邻的两个同学的编号。

输出格式

输出包括一行,这一行只包含一个整数,为最小的总代价。如果无论怎么调整都不能符合每个同学的愿望,则输出-1。

样例1

样例输入1[复制]

4
3 4
4 3
1 2
1 2

样例输出1[复制]

2

限制

1s

来源

NOIp2005 第三题

思路

1)如样例,有4个同学,按1,2,3,4编号。
给出4位同学最希望相邻的两个同学的编号
比如第1位同学希望与3和4相邻,第2位同学希望与4和3相邻,……
如果能调整到让所有人满意,则输出要调整的人数,否则输出
2)如上,写出初始序列和目标序列如下
初始序列:1,2,3,4
目标序列:1,3,2,4(注意是环状)
3)观察上面的两组序列,可看出只需要移动其中的两人即可,也就是移动不在目标位的人
4)问题是如何生成目标序列?
5)将1放在第一位,则下一位就应该是1所希望的人,用b[i]表示目标序列,g[i][0]和g[i][1]表示第i个同学最希望相邻的同学
则有:b[0]=0;b[1]=g[0][0];
6)对于目标序列的其他位,都依次判断左边的同学是不是两个最希望相邻的同学之一,如果是,则把另一位同学排在右边,如果两个都不是,则意味着最后无论怎样调整都不行
7)有目标序列后,只要顺序和逆序分别求目标序列和初始序列的差值,并找出其中出现最多的数即可,比如:
初始序列:1,2,3,4
目标序列:1,3,2,4
----------------------
差值:  0,1,3,0
用目标序列减初始序列,为了避免出现负号,可将负的差值+n,再%n,也就是环状的效果
8)上述差值中,0出现得最多,记录其出现的人数,那么n-最多的差值数,则为要调整的人数

代码

#include <iostream>
#include <cstdio>
#define N 50002
using namespace std;
int n,g[N][2],b[N],f[N][2],ans;
int init()
{
	b[0]=0;						//目标序列的第1个同学编号为1
	b[1]=g[0][0];				//目标序列的第2个同学为G[0][0],也就是编号为1的同学最希望相邻的第一个同学编号,
	for(int i=1;i<n-1;i++)		//目标序列的前一个同学如果正好是第i个同学所希望相邻的第一个
	  if(b[i-1]==g[b[i]][0])	//则其右边则是第i个同学所希望相邻的另一个同学
	    b[i+1]=g[b[i]][1];
	  else if(b[i-1]==g[b[i]][1])
	  		  b[i+1]=g[b[i]][0];
	  	   else
	  	      return 0;				//如果两边都不符合要求,则意味着无法调整
	return 1;
}
int solve()							//比较目标环与初始环最多有几个位置的元素相同,并求出结果
{
	for(int i=0;i<n;i++)
	{
		f[(b[i]-i+n)%n][0]++;
		f[(b[n-1-i]-i+n)%n][1]++;
	}
	for(int i=0;i<n;i++)
	  ans=max(ans,max(f[i][0],f[i][1]));
	return n-ans;
}
int main()
{
	scanf("%d",&n);					//输入人数
	for(int i=0;i<n;i++)
	{
	  scanf("%d%d",&g[i][0],&g[i][1]);	//输入第i个同学最希望相邻的两个同学的编号
	  g[i][0]--;						//将编号改为从0开始的序号,方便后面取模
	  g[i][1]--;
	} 
	if(init())							//如果能够调整
	  printf("%d\n",solve());			//则输出需要调整的人数 
	else
	 printf("-1\n");
	return 0;
}


0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:11851次
    • 积分:650
    • 等级:
    • 排名:千里之外
    • 原创:56篇
    • 转载:1篇
    • 译文:0篇
    • 评论:0条
    文章存档