Vijos P1850 小朋友的数字(动态规划,最大子段和)

原创 2016年08月29日 16:14:20
P1850小朋友的数字

描述

有 n 个小朋友排成一列。每个小朋友手上都有一个数字,这个数字可正可负。规定每个小朋友的特征值等于排在他前面(包括他本人)的小朋友中连续若干个(最少有一个)小朋友手上的数字之和的最大值。
作为这些小朋友的老师,你需要给每个小朋友一个分数,分数是这样规定的:第一个小朋友的分数是他的特征值,其它小朋友的分数为排在他前面的所有小朋友中(不包括他本人),小朋友分数加上其特征值的最大值。
请计算所有小朋友分数的最大值,输出时保持最大值的符号,将其绝对值对 p 取模后输出。

格式

输入格式

第一行包含两个正整数 n、p,之间用一个空格隔开。
第二行包含 n 个数,每两个整数之间用一个空格隔开,表示每个小朋友手上的数字。

输出格式

输出只有一行,包含一个整数,表示最大分数对 p 取模的结果。

样例1

样例输入1[复制]

5 997
1 2 3 4 5

样例输出1[复制]

21

样例2

样例输入2[复制]

5 7
-1 -1 -1 -1 -1

样例输出2[复制]

-1

限制

每个测试点1s。

提示

样例1说明:
小朋友的特征值分别为 1、3、6、10、15,分数分别为 1、2、5、11、21,最大值 21 对 997 的模是 21。
样例2说明:
小朋友的特征值分别为-1、-1、-1、-1、-1,分数分别为-1、-2、-2、-2、-2,最大值 -1 对 7 的模为-1,输出-1。
对于 50%的数据,1 ≤ n ≤ 1,000,1 ≤ p ≤ 1,000所有数字的绝对值不超过 1000;
对于 100%的数据, 1 ≤ n ≤ 1,000,000, 1 ≤ p ≤ 10 ^ 9 ,其他数字的绝对值均不超过 10 ^ 9 。

来源

NOIP 2013 普及组

思路

1)给出n个小朋友手中的数字a[i]

2)计算每个人的特征值f[i]

3)求分数的最大值ans

====================================

4)特征值f[i]等于排在他前面(包括他本人)的小朋友中连续若干个(最少有一个)小朋友手上的数字之和s[i]的最大值Max

5)s[i]表示以 i 结尾的最大子区间连续和,则:s[i]=max(s[i-1]+a[i],a[i])

6)考虑初值,因为有正有负,所以s[1]不适用上述公式,只能s[1]=a[1],当然f[1]=Max=a[1]

7)由上可得f[i]=Max=max(Max,s[i])

8)第一个小朋友的分数是他的特征值,其它小朋友的分数为排在他前面的所有小朋友中(不包括他本人),小朋友分数ans加上其特征值f[i]的最大值。因为特征值本身就是s[i]的最大值,可知从第二个数开始,特征值是不下降的,分数也是不下降的,

9)故对第一个小朋友,分数为f[1]+f[1],其他小朋友的分数ans=(ans+f[i])%p,为保证当前分数最大,故只加正的f[i]

10)因为都必须要用到long long,在可能的情况下,能不用数组就尽量不用,可以极大的优化空间

代码

#include <cstdio>
#include <iostream>
using namespace std;
long long n,p,x,s,f,f1,ans,i;
int main()
{
	scanf("%I64d%I64d",&n,&p);		//输入小朋友的人数n,结果对p取模
	scanf("%I64d",&x);				//输入第1个小朋友手中的数字x
	f1=f=s=x;						//第一个小朋友的特征值f1,连续和s,最大值MAX都是它本身,因为可以为负,这一句必须单独写
	ans=2*f1;						//第一个小朋友的分数加特征值,他的分数就是他的特征值,
	for(i=2;i<=n;i++)
	{
		scanf("%I64d",&x);			//输入第i个小朋友手中的数字
		s=max(s+x,x);				//连续若干个(最少有一个)小朋友手上的数字之和
		f=max(f,s);			//规定每个小朋友的特征值等于排在他前面(包括他本人)的小朋友中连续若干个(最少有一个)小朋友手上的数字之和的最大值
		if(i!=n)
		  if(f>0)
		    ans=(ans+f)%p;		//其它小朋友的分数为排在他前面的所有小朋友中(不包括他本人),小朋友分数加上其特征值的最大值
	}
	if(f1<0)
		ans=max(f1,ans);		//第一个数若为负,则须特判一下 
	printf("%I64d\n",ans%p);
	return 0;
}




动态规划2:最大子段和问题到最大子矩阵问题(二):最大n子段和问题详谈

问题描述:最长n子段和问题 有了最大子段和问题的基础,将一维数据变成二维数据 dp[i][j]保存前j个元素(包括j)分成i段最长连续子序列和 则有dp[i][j]=max(dp[i][j-1]...
  • starcuan
  • starcuan
  • 2014年02月01日 13:57
  • 1528

最大子段和(分治与动态规划典例)

最大子段和   问题: 给定n个整数(可能为负数)组成的序列a[1],a[2],a[3],…,a[n],求该序列如a[i]+a[i+1]+…+a[j]的子段和的最大值。当所给的整均为负数时...
  • ccDLlyy
  • ccDLlyy
  • 2016年08月18日 20:16
  • 2850

动态规划求最大子段和

一、动态规划思想:动态规划通过多阶段决策解决问题,每一次的决策结果序列都必须进行存储。因此,可以说:“动态规划是高效率、高消费”的算法。动态规划就是分支算法的升级版,它的实质是:分支算法+解决子问题冗...
  • jycboy
  • jycboy
  • 2015年07月27日 20:26
  • 1437

动态规划——最大子段和

最大字段和这是动态规划的经典问题,上一讲我们讲了一个简单的动态规划问题,这个最大子段和也不难,我们主要通过这几个简单的问题来了解一下动态规划。还有最大子段和用分治法也能做,等到日后我们在讲。 ...
  • jin_syuct
  • jin_syuct
  • 2015年10月24日 22:44
  • 1867

动态规划求最大子段和

目录目录 思路 例题 对动态规划的理解 参考思路(1)一般来说,数组a[n]的子序列的最直观描述是a[i]~a[j],1≤i≤j≤n。而为了更清晰地找到动态规划中的递推关系,可以认为原始数组的最大子序...
  • spongebob1234
  • spongebob1234
  • 2017年07月24日 16:50
  • 187

动态规划之最大子段和问题

问题描述:最大子段和问题是将一个n个整数的序列a[1],a[2]….a[n]中字段a[first]….a[last]之和,(1...
  • wuxuanyi27
  • wuxuanyi27
  • 2016年05月31日 11:34
  • 5575

[ACM] POJ 2479 Maximum sum (动态规划求不相交的两段子段和的最大值)

Maximum sum Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 33363   Accepted: 103...
  • sr19930829
  • sr19930829
  • 2014年08月06日 10:42
  • 1769

运用分治法和动态规划方法求解最大子数组问题

运用分治法和动态规划方法求解最大子数组问题运用分治法和动态规划方法求解最大子数组问题 问题描述 问题求解 分治算法 代码实现 动态规划算法 代码实现 问题描述给定整数序列a1,a2,...,an a_...
  • u011853479
  • u011853479
  • 2016年11月03日 23:29
  • 446

动态规划之最大子段和问题

有一由n个整数组成的序列A={a1,a2,…an,},求该序列如 a[i]+a[i+1]+…+a[j]的子段和的最大值。如果序列中全部是负数则最大子段和为0,依此定义,所求的最优值max{0,a[i...
  • cxs123678
  • cxs123678
  • 2017年11月21日 19:16
  • 95

(3)最大子段和问题____动态规划

最大子段和问题就是:  给定n个整数(可能为负数)组成的序列a[1],a[2],a[3],…,a[n],求该序列如a[i]+a[i+1]+…+a[j]的子段和的最大值。当所给的整均为负数时定义子段和为...
  • y1196645376
  • y1196645376
  • 2014年12月24日 11:08
  • 1755
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:Vijos P1850 小朋友的数字(动态规划,最大子段和)
举报原因:
原因补充:

(最多只允许输入30个字)