关闭

Vijos P1913 螺旋矩阵(模拟)

标签: vijosNOIP模拟
80人阅读 评论(0) 收藏 举报
P1913螺旋矩阵

描述

一个 n 行 n 列的螺旋矩阵可由如下方法生成:

从矩阵的左上角(第 1 行第 1 列)出发,初始时向右移动;如果前方是未曾经过的格子, 则继续前进,否则右转;重复上述操作直至经过矩阵中所有格子。根据经过顺序,在格子中 依次填入 1, 2, 3, ... , n2,便构成了一个螺旋矩阵。

下图是一个 n = 4 时的螺旋矩阵。

1121110213169314158456712341213145111615610987

现给出矩阵大小 n 以及 i 和 j,请你求出该矩阵中第 i 行第 j 列的数是多少。

格式

输入格式

输入共一行,包含三个整数 n,i,j,每两个整数之间用一个空格隔开,分别表示矩阵大小、待求的数所在的行号和列号。

输出格式

输出共一行,包含一个整数,表示相应矩阵中第 i 行第 j 列的数。

样例1

样例输入1[复制]

4 2 3

样例输出1[复制]

14

限制

对于 50%的数据,1 ≤ n ≤ 100;
对于 100%的数据,1 ≤ n ≤ 30,000,1 ≤ i ≤ n,1 ≤ j ≤ n。

来源

NOIP2014 普及组

思路

1)很容易就想成先生成这样一个方阵,然后再输出(i,j)的数,但n<=30,000,如果定义a[N][N],显然不合适

2)既然只需要输出一个数,而矩阵的数据又是按规律填入,那么只要反过来想就好了

3)按照螺旋的的方式一圈圈去除数据,比如样例4*4的矩阵,最外圈12个数,也就是(n-1)*4,至于这12个如何放,其实并不重要,只要i,j不在这一圈上,那么只要关心圈上总的个数就好

4)每去除一圈,去除的总数t+=(n-1)*4,而行数n-2,相应的,要求的i,j则分别减1,不断循环这个过程,直到i或者j成了最外一圈

5)根据(i,j)所在的位置,加上之前的数即可

代码

#include <iostream>
using namespace std;
int n,x,y,t;
int main()
{
	cin>>n>>x>>y;
	while(x>1&&x<n&&y>1&&y<n) 	//如果要求的坐标不在最外圈 
	{
		t+=4*(n-1);				//去除最外圈的数 
		n-=2;					//行数或列数减2 
		x--;					//坐标分别减一 
		y--;
	}
	if(x==1) t+=y;							//第一行 
	else if(y==n) t+=n-1+x;					//第n列 
		 else if(x==n) t+=2*(n-1)+n-y+1;	//第n行 
		 	  else t+=3*(n-1)+n-x+1;		//第一列 
	cout<<t<<endl;
	return 0;
}


0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:9812次
    • 积分:626
    • 等级:
    • 排名:千里之外
    • 原创:56篇
    • 转载:1篇
    • 译文:0篇
    • 评论:0条
    文章存档