关闭

hadoop框架下各类软件介绍

标签: hadoop框架分布式文件系统软件
217人阅读 评论(0) 收藏 举报
分类:

HDFS

Hadoop分布式文件系统(HDFS)被设计成适合运行在通用硬件(commodity hardware)上的分布式文件系统。它和现有的分布式文件系统有很多共同点。但同时,它和其他的分布式文件系统的区别也是很明显的。HDFS是一个高度容错性的系统,适合部署在廉价的机器上。HDFS能提供高吞吐量的数据访问,非常适合大规模数据集上的应用。HDFS放宽了一部分POSIX约束,来实现流式读取文件系统数据的目的。HDFS在最开始是作为Apache Nutch搜索引擎项目的基础架构而开发的。HDFS是Apache Hadoop Core项目的一部分。

YARN

Apache Hadoop YARN (Yet Another Resource Negotiator,另一种资源协调者)是一种新的 Hadoop 资源管理器,它是一个通用资源管理系统,可为上层应用提供统一的资源管理和调度,它的引入为集群在利用率、资源统一管理和数据共享等方面带来了巨大好处。

MapReduce

MapReduce是一种编程模型,用于大规模数据集(大于1TB)的并行运算。概念”Map(映射)”和”Reduce(归约)”,是它们的主要思想,都是从函数式编程语言里借来的,还有从矢量编程语言里借来的特性。它极大地方便了编程人员在不会分布式并行编程的情况下,将自己的程序运行在分布式系统上。 当前的软件实现是指定一个Map(映射)函数,用来把一组键值对映射成一组新的键值对,指定并发的Reduce(归约)函数,用来保证所有映射的键值对中的每一个共享相同的键组。

HIVE

hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供简单的sql查询功能,可以将sql语句转换为MapReduce任务进行运行。 其优点是学习成本低,可以通过类SQL语句快速实现简单的MapReduce统计,不必开发专门的MapReduce应用,十分适合数据仓库的统计分析。

ZooKeeper

ZooKeeper是一个分布式的,开放源码的分布式应用程序协调服务,是Google的Chubby一个开源的实现,是Hadoop和Hbase的重要组件。它是一个为分布式应用提供一致性服务的软件,提供的功能包括:配置维护、域名服务、分布式同步、组服务等。
ZooKeeper的目标就是封装好复杂易出错的关键服务,将简单易用的接口和性能高效、功能稳定的系统提供给用户。
ZooKeeper包含一个简单的原语集,提供Java和C的接口。
ZooKeeper代码版本中,提供了分布式独享锁、选举、队列的接口,代码在zookeeper-3.4.3\src\recipes。其中分布锁和队列有Java和C两个版本,选举只有Java版本。

Pig

Apache Pig 是一个高级过程语言,适合于使用 Hadoop 和 MapReduce 平台来查询大型半结构化数据集。通过允许对分布式数据集进行类似 SQL 的查询,Pig 可以简化 Hadoop 的使用。[1]?
用MapReduce进行数据分析。当业务比较复杂的时候,使用MapReduce将会是一个很复杂的事情,比如你需要对数据进行很多预处理或转换,以便能够适应MapReduce的处理模式。另一方面,编写MapReduce程序,发布及运行作业都将是一个比较耗时的事情。Pig的出现很好的弥补了这一不足。Pig能够让你专心于数据及业务本身,而不是纠结于数据的格式转换以及MapReduce程序的编写。本质是上来说,当你使用Pig进行处理时,Pig本身会在后台生成一系列的MapReduce操作来执行任务,但是这个过程对用户来说是透明的。

HBase

HBase是一个分布式的、面向列的开源数据库,该技术来源于 Fay Chang 所撰写的Google论文“Bigtable:一个结构化数据的分布式存储系统”。就像Bigtable利用了Google文件系统(File System)所提供的分布式数据存储一样,HBase在Hadoop之上提供了类似于Bigtable的能力。HBase是Apache的Hadoop项目的子项目。HBase不同于一般的关系数据库,它是一个适合于非结构化数据存储的数据库。另一个不同的是HBase基于列的而不是基于行的模式。

Cassandra

Cassandra是一套开源分布式NoSQL数据库系统。它最初由Facebook开发,用于储存收件箱等简单格式数据,集GoogleBigTable的数据模型与Amazon Dynamo的完全分布式的架构于一身Facebook于2008将 Cassandra 开源,此后,由于Cassandra良好的可扩展性,被Digg、Twitter等知名Web 2.0网站所采纳,成为了一种流行的分布式结构化数据存储方案。
Cassandra是一个混合型的非关系的数据库,类似于Google的BigTable。其主要功能比Dynamo (分布式的Key-Value存储系统)更丰富,但支持度却不如文档存储MongoDB(介于关系数据库和非关系数据库之间的开源产品,是非关系数据库当中功能最丰富,最像关系数据库的。支持的数据结构非常松散,是类似json的bjson格式,因此可以存储比较复杂的数据类型)。Cassandra最初由Facebook开发,后转变成了开源项目。它是一个网络社交云计算方面理想的数据库。以Amazon专有的完全分布式的Dynamo为基础,结合了Google BigTable基于列族(Column Family)的数据模型。P2P去中心化的存储。很多方面都可以称之为Dynamo 2.0。

MongoDB

是一个基于分布式文件存储的数据库。由C++语言编写。旨在为WEB应用提供可扩展的高性能数据存储解决方案。
是一个介于关系数据库和非关系数据库之间的产品,是非关系数据库当中功能最丰富,最像关系数据库的。他支持的数据结构非常松散,是类似json的bson格式,因此可以存储比较复杂的数据类型。Mongo最大的特点是他支持的查询语言非常强大,其语法有点类似于面向对象的查询语言,几乎可以实现类似关系数据库单表查询的绝大部分功能,而且还支持对数据建立索引。

很多人可能都是在 2015 年才听到 Flink 这个词,其实早在 2008 年,Flink 的前身已经是柏林理工大学一个研究性项目, 在 2014 被 Apache 孵化器所接受,然后迅速地成为了 ASF(Apache Software Foundation)的顶级项目之一。Flink 的最新版本目前已经更新到了 0.10.0 了,在很多人感慨 Spark 的快速发展的同时,或许我们也该为 Flink 的发展速度点个赞。
Flink 是一个针对流数据和批数据的分布式处理引擎。它主要是由 Java 代码实现。目前主要还是依靠开源社区的贡献而发展。对 Flink 而言,其所要处理的主要场景就是流数据,批数据只是流数据的一个极限特例而已。再换句话说,Flink 会把所有任务当成流来处理,这也是其最大的特点。Flink 可以支持本地的快速迭代,以及一些环形的迭代任务。并且 Flink 可以定制化内存管理。在这点,如果要对比 Flink 和 Spark 的话,Flink 并没有将内存完全交给应用层。这也是为什么 Spark 相对于 Flink,更容易出现 OOM 的原因(out of memory)。就框架本身与应用场景来说,Flink 更相似与 Storm。

Spark

Spark是UC Berkeley AMP lab (加州大学伯克利分校的AMP实验室)所开源的类Hadoop MapReduce的通用并行框架,Spark,拥有Hadoop MapReduce所具有的优点;但不同于MapReduce的是Job中间输出结果可以保存在内存中,从而不再需要读写HDFS,因此Spark能更好地适用于数据挖掘与机器学习等需要迭代的MapReduce的算法。
Spark 是一种与 Hadoop 相似的开源集群计算环境,但是两者之间还存在一些不同之处,这些有用的不同之处使 Spark 在某些工作负载方面表现得更加优越,换句话说,Spark 启用了内存分布数据集,除了能够提供交互式查询外,它还可以优化迭代工作负载。
Spark 是在 Scala 语言中实现的,它将 Scala 用作其应用程序框架。与 Hadoop 不同,Spark 和 Scala 能够紧密集成,其中的 Scala 可以像操作本地集合对象一样轻松地操作分布式数据集。
尽管创建 Spark 是为了支持分布式数据集上的迭代作业,但是实际上它是对 Hadoop 的补充,可以在 Hadoop 文件系统中并行运行。通过名为 Mesos 的第三方集群框架可以支持此行为。Spark 由加州大学伯克利分校 AMP 实验室 (Algorithms, Machines, and People Lab) 开发,可用来构建大型的、低延迟的数据分析应用程序。

Storm

Twitter将Storm正式开源了,这是一个分布式的、容错的实时计算系统,它被托管在GitHub上,遵循 Eclipse Public License 1.0。Storm是由BackType开发的实时处理系统,BackType现在已在Twitter麾下。GitHub上的最新版本是Storm 0.8.0,基本是用Clojure写的。
Storm为分布式实时计算提供了一组通用原语,可被用于“流处理”之中,实时处理消息并更新数据库。这是管理队列及工作者集群的另一种方式。 Storm也可被用于“连续计算”(continuous computation),对数据流做连续查询,在计算时就将结果以流的形式输出给用户。它还可被用于“分布式RPC”,以并行的方式运行昂贵的运算。 Storm的主工程师Nathan Marz表示:
Storm可以方便地在一个计算机集群中编写与扩展复杂的实时计算,Storm用于实时处理,就好比 Hadoop 用于批处理。Storm保证每个消息都会得到处理,而且它很快——在一个小集群中,每秒可以处理数以百万计的消息。更棒的是你可以使用任意编程语言来做开发。

Giraph

Apache Giraph?is an iterative graph processing system built for high scalability. For example, it is currently used at Facebook to analyze the social graph formed by users and their connections. Giraph originated as the open-source counterpart to?Pregel, the graph processing architecture developed at Google and described in a 2010?paper. Both systems are inspired by the?Bulk Synchronous Parallel?model of distributed computation introduced by Leslie Valiant. Giraph adds several features beyond the basic Pregel model, including master computation, sharded aggregators, edge-oriented input, out-of-core computation, and more. With a steady development cycle and a growing community of users worldwide, Giraph is a natural choice for unleashing the potential of structured datasets at a massive scale.
Apache Giraph是一个迭代优化的图谱处理系统,具备高扩展性。例如,目前在facebook上用于分析,用户和他们之间的联系所形成的社交网络。Giraph和Pregel一样是开源的,是由谷歌在2010发布开发的图形处理架构。这两个系统都受到Bulk Synchronous的启发,使用块同步并行分布式计算 模型。除了基本的Pregel模型,Giraph增加了几个特色,包括主计算,分散聚合,面向边输入,核外计算等。随着稳定的发展周期和不断扩大的全球用户,Giraph是建立大规模结构化数据的潜在选择。

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:19563次
    • 积分:108
    • 等级:
    • 排名:千里之外
    • 原创:27篇
    • 转载:10篇
    • 译文:0篇
    • 评论:1条
    My Github
      https://github.com/tianpaogege

    文章分类
    最新评论