bellman-ford算法(最短路、最短路劲)

原创 2017年01月02日 21:16:32
/***
*数据输入的格式为:
*第一个数m:源点的下标
*第二个数n:有多少个结点
*输入n组数,每组数以0 0结束,且数据为邻接点与权值相间输入
*/
/***
*(减少编程过程中常出现错误,减少编译或运行时的违规访问之后程序自动停止)
*总结:1、一定要在确定申请或定义了相关空间之后,然后在对空间里的数据进行操作,目的是避免
*超出范围访问(一定要在已定义的空间范围里);
*2、准确的定义函数,调用函数时名称要一致(避免大小写差错),如果是要通过调用函数的形式
*去改变实际地址里面的数据,那么就要在调用函数时将地址赋过去,要函数对实际地址里的值进行
*操作然后相应的改变;
*3、像本程序,Node型结点里面包含有三个值end、w、next其中前两个为整型、后一个为指针,因此
*在给一个结点赋值时应同时将next赋值为NULL避免后续操作不必要的一些违规访问。
*4、在对一个数组进行遍历时,要准确的使用for循环里的i,j,k,不要前一个for循环使用了j,但这
*个循环为变量k遍历时却又使用了j。
*/
#include<iostream>
#include<cstdlib>
#include<fstream>

using namespace std;
const int MAX = 10000;  //无穷大权值
int d[21],t[21]; //最大20个结点的最短路的存储,d[]表示最短距离,t[]表示最短路径
typedef struct Node{ //end表示边的尾端点
    int end;
    int w;
    struct Node* next;
}Node,*PNode;
typedef struct Node1{ //c为结点名称
    char c;
    PNode p;
}Node1;

Node1 N[21];  //最多20个结点的邻接表存储结构

int bellmanford(int n);  // 传递的n为结点数

int main()
{
    ifstream cin("aaa.txt");
    int b,m,n; //m为源点,n为结点个数,b表示判断有无负权回路
    char a;
    PNode pp,pq;//结点指针
    cin>>m>>n;
    for(int i = 1; i <= n; i++)
    {
        d[i] = MAX;
    }
    d[m] = 0;
    t[m] = 0;
    int j=1;
    int v=1;
    while(j <= n){ // 建立图的存储结构
        cin>>a;
        N[j].c = a;
        N[j].p = NULL;
        int  end1,w1;
        while(cin>>end1>>w1){
            if(end1 == 0 && w1 == 0)break;
            pp = (PNode)malloc(sizeof(Node));
            pp->end = end1; pp->w = w1; pp->next = NULL;
            if(v == 1) {N[j].p = pp; v++; pq = pp; continue;}
            pq->next = pp; pq = pp;
        }
        v = 1;
        j++;
    }
    b=bellmanford(n);
    if(b == 0){cout<<"存在负权回路";return 0;}
    for(int i = 1; i <= n; i++){ //将源点到其他每个点的最短距离以及路径输出
        cout<<"第"<<i<<":"<<d[i]<<endl;
        j = i;
        while(1){
            if(t[j] == 0){cout<<N[j].c<<endl; break;}
            cout<<N[j].c<<"<--";
            j = t[j];
        }
    }
    return 0;
}

int bellmanford(int n)
{
    PNode pq;
    int i,j,k;
    for(i = 1; i <= n-1; i++){
        for(j = 1; j <= n; j++){
                pq = N[j].p;
            while(pq != NULL){
                if(d[j] == MAX) {pq = pq->next; continue;}
                if(d[j] + pq->w < d[pq->end]){ d[pq->end] = d[j] + pq->w; t[pq->end] = j;}
                pq = pq->next;
            }
        }
    }
    for(k = 1; k <= n; k++){
            pq = N[k].p;
            while(pq != NULL){
                if(d[k] + pq->w < d[pq->end])return 0;
                pq = pq->next;
            }
        }
    return 1;
}
版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

最短路 Bellman-Ford 边上权值任意的单源最短路

小B算法:            怎样都好,就是不能图中包含负权值回路。。!           ...

⑨讲图论第五课: Bellman-Ford算法求最短路

贝尔曼-福特算法(Bellman-Ford)是由 RichardBellman 和 Lester Ford 创立的,求解单源最短路径问题的一种算法。有时候这种算法也被称为Moore-Bellman-F...

bellman-ford算法 最短路

bellman-ford算法 在负权的图的单源最短路问题Bellman-Ford 算法和 Dijkstra 算法都是可以解决单源最短路径的算法,一个实现的很好的 Dijkstra 算法比 Bellma...

最短路的Bellman-Ford算法 【判断有无负权环】

Bellman-Ford算法是一种求单源最短路算法,时间复杂度:O POJ 3259 例题

算法学习笔记:Bellman-Ford算法 单源最短路

Bellman-Ford算法 解决单源最短路    最短路是图问题中常见的一种问题,最短路也分很多种类。之前在写题的时候接触到Dijkstra算法。但是后来接触到更多单源最短路问题后发现,Dijkst...

POJ 3169 Layout bellman_ford 最短路

#include #include #include #include #include #include #include #include #include #include ...

Bellman Ford+SPFA队列优化(路径还原 输出最短路的路径)

①邻接表(效率较高) #include #include #include #include #include #include #include #include using nam...

单源最短路径算法 Bellman-Ford && SPFA 及 最短路算法统一归纳

为避免各种求最短路的方法混淆,开始之前先做个归纳。   ① BFS - 无权图 (有向或无向,有环或无环)- 对于树的bfs,无需判重,因为根本不会重复。对于图的bfs,要有vis[]进行...

Bellman_Ford ----->最短路

Bellman_Ford -----最短路          情景带入:给你两个数 m,n。n代表一共有n个村庄,之后有m行,每行包含三个数 from,to,dist.这三个数代表着,从村庄from到...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)