关闭

Deep Learning模型之:CNN卷积神经网络(二) 文字识别系统LeNet-5

在经典的模式识别中,一般是事先提取特征。提取诸多特征后,要对这些特征进行相关性分析,找到最能代表字符的特征,去掉对分类无关和自相关的特征。然而,这些特征的提取太过依赖人的经验和主观意识,提取到的特征的不同对分类性能影响很大,甚至提取的特征的顺序也会影响最后的分类性能。同时,图像预处理的好坏也会影响到提取的特征。那么,如何把特征提取这一过程作为一个自适应、自学习的过程,通过机器学习找到分类性能最优的...
阅读(111) 评论(0)

Deep Learning模型之:CNN卷积神经网络(一)深度解析CNN

1. 概述    卷积神经网络是一种特殊的深层的神经网络模型,它的特殊性体现在两个方面,一方面它的神经元间的连接是非全连接的, 另一方面同一层中某些神经元之间的连接的权重是共享的(即相同的)。它的非全连接和权值共享的网络结构使之更类似于生物 神经网络,降低了网络模型的复杂度(对于很难学习的深层结构来说,这是非常重要的),减少了权值的数量。      回想一下BP神经网络。BP网络每一层...
阅读(151) 评论(0)

TensorFlow分布式全套(原理,部署,实例)

TF的实现分为了单机实现和分布式实现,在分布式实现中,需要实现的是对client,master,worker process不在同一台机器上时的支持。数据量很大的情况下,单机跑深度学习程序,过于耗时,所以需要TensorFlow分布式并行。 该实例是TF的经典入门实例手写字体识别MNIST基于分布式的实现,代码都加了中文注释,更加通俗易懂。 GitHub实例地址:https://git...
阅读(87) 评论(0)

ubuntu16.04下安装TensorFlow(GPU加速)----详细图文教程

写在前面 一些废话 接触深度学习已经有一段时间,之前一直在windows下使用Theano,但是发现Theano天书般的源码真是头大,在看到tensorflow中文教程后,发现它竟然逻辑清晰,教程丰富,实在是居家旅行必备良药啊![偷笑][偷笑][偷笑] 所以决定利用国庆假期学习ubuntu和TensorFlow的安装,结果入坑无数,同时搞坏了一块1T硬盘(花了450大洋啊,心在滴...
阅读(90) 评论(0)

手把手教你如何用 TensorFlow 实现基于 DNN 的文本分类

许多开发者向新手建议:如果你想要入门机器学习,就必须先了解一些关键算法的工作原理,然后再开始动手实践。但我不这么认为。 我觉得实践高于理论,新手首先要做的是了解整个模型的工作流程,数据大致是怎样流动的,经过了哪些关键的结点,最后的结果在哪里获取,并立即开始动手实践,构建自己的机器学习模型。至于算法和函数内部的实现机制,可以等了解整个流程之后,在实践中进行更深入的学习和掌握。 那么问题来...
阅读(60) 评论(0)

TensorFlow深度学习,一篇文章就够了

作者: 陈迪豪,就职小米科技,深度学习工程师,TensorFlow代码提交者。 TensorFlow深度学习框架 Google不仅是大数据和云计算的领导者,在机器学习和深度学习上也有很好的实践和积累,在2015年年底开源了内部使用的深度学习框架TensorFlow。 与Caffe、Theano、Torch、MXNet等框架相比,TensorFlow在Github上Fork数和St...
阅读(182) 评论(0)

nginx超详细讲解之概述

下载地址:http://nginx.org/en/download.html 官方文档:http://nginx.org/en/docs/http/ngx_http_core_module.html 一、nginx目录 conf 配置文件 html 网页文件 logs 日志文件  sbin 主要二进制程序 nginx默认使用80端口启动。 二、nginx配置...
阅读(95) 评论(0)

TensorFlow培训

1. 主流深度学习框架对比 2. 版本介绍 3. TensorFlow 1.0 变化 速度提升:更快的速度,引入了XLA编译器,最高提升58倍训练速度 改进了在移动设备上的运行:也是通过XLA使 TensorFlow 在移动设备上运行 引入更高级别API,增强灵活性和兼容性 强化Python API,更适用于生产环境 引入了TF调试器(TF De...
阅读(153) 评论(0)
    个人资料
    • 访问:941次
    • 积分:34
    • 等级:
    • 排名:千里之外
    • 原创:1篇
    • 转载:7篇
    • 译文:0篇
    • 评论:0条
    文章分类
    文章存档