关闭
当前搜索:

刚安装的ubuntu需要解决的一些问题

对于新安装的ubuntu会遇到一些问题,例如vim安装,apt-get的更新还有全屏的调节等一系列的问题,所以在这里进行一一解决**(一)全屏的调节,第一开始的进入ubuntu你可能会遇到如下图的显示问题 ,不管如何调节都不能取得全屏的状态,为什么会出现这种情况呢?原因是该操作系统默认分辨率为:**(1)点击右上角设置图标,点击system-setting (我已经调教好了只是做一个示范)(2)把...
阅读(24) 评论(0)

冒泡排序优化

冒泡排序比较简单**,首先简单说下算法思路:过程:a. 从第一个记录开始和第二个记录比较,如果大于第二个记录就交换,否则就不交换,比较下一个元素,依次循环下去,因此第一趟就会找到最大的值放到数组的最后面n-1的位置上。 b. 然后用相同的方式在前n-2个元素中得出最大值放在n-2位置。 c. 重复上述操作,知道全部比较完成。void BullSort(int a[], int length) {...
阅读(28) 评论(0)

简单的KMP算法

虽然题目声称KMP简单,但只是对于理解了的人而言的,但是对于还没有理解的人来说,KMP算法确实是非常难的,但是不要紧,我相信通过我的介绍你会理解的,但是个人认为,不论什么比较难理解的算法,如果直接给你讲,即使讲的方法再简单,但是你没有去自己思考,那也是理解不了的,就像做一道特别难的数学题,你想了几个小时还是没有做出来,但是这时候当别人给你说的时候,你可能会豁然开朗,这是因为你前面几个小时的思考起到的...
阅读(64) 评论(0)

数据结构学习笔记(21)----红黑树

(一)什么是红黑树对于红黑来说,其是从AVL树演变而来,因此首先应该满足AVL(平衡二叉树)的性质。然后在满足以下性质: (1)节点非红即黑 (2)根节点必须是黑 (3)叶子结点为空且必须为黑 (4)任意一个节点到叶节点的路径中黑节点子树相同 例如: 满足上述性质就是一棵红黑树了,但是对于红黑树的删除与插入必须也要满足以上的条件,下面就来说一下红黑树的插入与删除(二)红黑树...
阅读(43) 评论(0)

数据结构学习笔记(20)---图的应用(生成树与最小生成树)

数据结构学习笔记(20)—图的应用(1)上一篇博客写了图的基本存储于遍历,在此基础上,此篇博客将会介绍图的主要应用—–生成树与最小生成树。(一)生成树定义:我总感觉书上定义比较繁琐,因此就自己简单定义了一下(可能不对哦),生成树其实就是:对于一棵树G,若顶点数为n,则在原来图的基础上把边删除到n-1条边且能连通各点就是生成树。,注意生成树不唯一 例如: 利用遍历方法可以求得生成树,以邻...
阅读(38) 评论(0)

数据结构学习笔记(19) ---图的存储与遍历

(一)图的基本术语 (1)无向完全图:图中任意两个顶点都有边存在则该图为无向完全图,且图的边树数为:n*(n-1)/2 (2)有向完全图:图中任意两点都有方向相反的边则该图为有向完全图,且图的边树数为:n*(n-1) (3)连通图:若力图中任意两个顶点都有路径(即可到达)则成该图为连通的。 (4)连通分量:无向图中的极大连通子图称为该图的连通分量,显然无向连通图的连通分量为其自身。...
阅读(79) 评论(0)

如何使用pull request

前面主要讲的是如何使用git 与一些简单的GitHub操作,但是当你在网上看到一个正在开发项目时,想要参与进来,fork后,对该项目的代码或者对项目添加了一些功能后,想让别人采纳你的代码,这时候就需要想别人pull request 了,下面进行介绍。(一)什么是pull request :该功能从自己修改源代码后,请求对方仓库采纳该修改时采取的一种行为。(二)发送pull request 的前期准备...
阅读(51) 评论(0)

数据结构学习笔记(18)---B树

(1)什么是B树,其实有一个另外的没名字叫B-树,所以网上说的B-树其实就是B树。B树的定义: (1) 首先B树是一棵平衡的m路查找树,树中每个节点的最多有m个子树。 (2) 根节点最少有两个子树。 (3) 除根节点以外的非叶子结点最少有[m/2]个子树。 (4) 所有叶节点出现在同一层上,并且不含信息,通常称为失败节点,目的是便于分子B树的查找。 好了,满足上述条件就是一个标准的B树了,...
阅读(59) 评论(0)

数据结构学习笔记(17)---归并排序与基排序

(1)归并排序算法思想: (1)对于一个人数组,首先把数组平均分为两部分,即[low,mid]和[mid+1,high], (2)分别对左右两部分进行再进行归并排序。 (3)将左右两步部分合并 例如以下例子:开始将数据看成长度为1的有序表,两两归并为长度为2的表,依次类推直到长度为n的有序表 性能分析:平均时间复杂度O(nlogn),空间复杂度O(1),比较稳定代码:void Merge(...
阅读(258) 评论(0)

github创建仓库克隆到本地以及分支操作命令

(一)github上创建仓库 (1)注册GitHub账号(进入官网直接可以注册) (2)注册完成后进行第一个repositories的尝试,单机有右上角的+标志,进行new repositories (3)填写项目名称Repository name 这里用Hello_World。 Public、Private在这一栏可以选择Public 还是Private。这里我们 选择Pub...
阅读(100) 评论(0)

git常用命令总结(1)

(1)创建一个人目录,并该一个目录 mkdir git_hello cd git_hello(2)初始化有个仓库: git init 在该目录下出现 .git文件 (3)在该目录下添加一个源程序hello.cpp并编辑 touch hello.cpp vi hello.cpp //添加代码 int main() { printf("Hell...
阅读(50) 评论(0)

Git与Github建立密钥

(1)Github是什么:GitHub 是一个面向开源及私有 软件项目的托管平台,因为只支持 Git 作为唯一的版本库格式进行托管,故名 GitHub。也就是说你的开源软件可以托管到该平台,不论你是合作开发项目还是获得开源软件都可以从该平台上Fork,并用Git参与到项目中去.(2)git 与 GitHub的建立密钥:第一步首先打开github的网页进入,如果你没有GitHub账户, 请先注册一个...
阅读(49) 评论(0)

Git简介

通过两个星期的学习,虽然还没有完全深入掌握git与GitHub的使用,但是对于简单的软件开发流程与基本的操作还是掌握的不错的,最主要的原因是选了一本好的教材—-《GitHub 入门与实践》,这本书真心讲的不错,可以说的手把手教学,真心体会到作者的用心良苦,非常适合初学者,建议以此本书作为入门教材,话不多说了,接下来就对这两个星期的学习做一番总结与回顾吧。(一)Git是什么?Git是分散性版本控制系统...
阅读(61) 评论(0)

数据结构学习笔记(16)---选择类排序

数据结构学习笔记(16)—选择类排序选择排序思想就是第一次选出关键字最小的的记录作为第一个,然后然后就是除了第一个人元素外再去选取一个人最小的元素放在第二个,依次循环知道全部记录有序为止。但是这样效率会有点低,为了改进算法的效率而又提出了树形选择排序和堆排序,下面进行一一介绍:(1)简单选择排序:选择排序的基本思想:每一趟在n-i+1(i=1,2,3,…,n-1)个记录中选取关键字最小的记录作为有序...
阅读(46) 评论(0)

数据结构学习笔记(15)---交换类排序

数据结构学习笔记(15)—交换排序交换类排序其实一般就两种,一个就是冒排序,另一个就是快速排序,比较两张算法,肯定是快排效率较高,原因很简单,对于冒泡排序只能与相邻的元素进行比较,互换时候只能消除一个逆序,但是快排通过两个不相邻的元素交换,可以消除待排序记录中的多个逆序,即后面的元素不需要再做无谓的逆序了。(1)冒泡排序比较简单,简单说下算法思路:过程:a. 从第一个记录开始和第二个记录比较,如果大...
阅读(83) 评论(0)

数据结构学习笔记(14)---插入排序

数据结构学习笔记(14)—内部排序基本思想:在一个已经排好序的记录子集的基础上,每一步将下一个人等待排序的记录有序插入到已经排序的记录子集上,知道所有待排序记录全部插入为止。(1)直接插入排序:直接插入排序其实很简单,从第二个元素开始,逐步插入到已排序子序列中。其比较实用与排序记录数比较少的情况,排序数目较大时,该算法排序性能不太好。代码如下:void InsertSort(int a[], int...
阅读(62) 评论(0)

数据结构学习笔记(13)---哈希查找

(1)哈希查找的思想:首先根据一个人关键字映射该关键字的地址,即若关键字为k,确立一个人函数p = H(k),此时p就是该关键字的存储地址,当查找一个人关键字的时候就可以根据函数计算出相应的地址。(2)哈希函数构造原则:一是函数本身便于计算,二是计算出来的函数遍布均匀,尽可能减少冲突。哈希函数常有五种:a**.数字分析法**:事先知道该关键字集合,并且每个关键字的位数比哈希表地址位数多,则可以从关键...
阅读(50) 评论(0)

MFC 加入背景音乐

对于加入背景音乐的问题,首先我用的是playSound()函数,此函数虽然可以播放声音,但是当另为一个人声音出现时,原声音被打断,即此方法不能当做背景音乐,在此介绍两种添加背景音乐的两种方式:(1)利用线程,即开辟一个新的线程单独作为播放音乐,此时可以用playSound()函数,代码如下:#include #pragma comment(lib, "WINMM.LIB")...
阅读(40) 评论(0)

MFC透明贴图问题

对于透明贴图从网上找了很多资料,但是只有收获甚小,还是从一位老铁的开源项目中学到透明贴图的解决方案:(一)首先说下我的搜索结果吧,我的解决方案中是用一个函数搞定的: TransparentBlt(pDC->m_hDC,point.x, point.y, 109, 86,memDC.m_hDC,0, 0, 109, 86, RGB(0, 0, 0));该函数的参数原型为:BOOL Transpare...
阅读(66) 评论(0)

数据结构学习笔记吧(11)---基于树的查找

(1)二叉排序树定义:该二叉树或者是一棵空树或者是一棵具有下列性质的树: 1. 若他的左子树非空,则左子树上所有节点的值均小于根节点的值 2. 若他的右子树非空,则右子树上所有节点的值均大于(等于)根节点的值 3. 他的左子树与与右子树也分别是二叉排序树二叉排序树的插入思路: 1. 首先判断二叉树是否为空,若为空则可以直接把当做根节点 2. 若非空,则key与根节点进行比较 a....
阅读(25) 评论(0)
55条 共3页1 2 3 下一页 尾页
    个人资料
    • 访问:3516次
    • 积分:542
    • 等级:
    • 排名:千里之外
    • 原创:53篇
    • 转载:2篇
    • 译文:0篇
    • 评论:0条