关闭

区间dp

标签: 动态规划
130人阅读 评论(0) 收藏 举报
分类:

区间dp

题目链接:https://vjudge.net/contest/169127#problem/F

这是我做的第一个区间dp,个人觉得,区间dp就是根据区间的变化来反映整个区间的变化,通过一个个小区间的动归的递推,很容易得出最后的整个区间。

题意:告诉有n场晚会中需要穿的衣服,衣服是可以套在其他衣服外面的,告诉了序列顺序之后求出最少需要穿多少次衣服。

解题思路:使用dp[i][j]来表示区间 i~j的答案,那么对于第 i 件衣服,我们有
①:如果在之后的区间内都不再重复利用这件衣服,那么明显 dp[i][j] = dp[i+1][j] + 1
②:如果在之后的区间 i+1 ~ j 中存在一件衣服 k 是跟 i 一样的,那么我们便可以考虑是不是可以将i那件衣服在k这个地方重复利用,那么转移方程为 dp[i][j] = min(dp[i][j] , dp[i][k-1]+dp[k+1][j])
因为是从后面的区间往前面转,所以循环的时候应该是从后往前的

各位大佬有什么好的见解可以给我留评论,小弟在此谢过。。。

代码如下:

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <string>

using namespace std;
typedef long long ll;
//const ll inf=1e15;
const ll inf=0x3f3f3f3f3f3f3f;
int a[100+10];
int dp[110][110];
int main()
{
    int t;
    cin>>t;
    int kase=0;
    while(t--)
    {
        int n;
        cin>>n;//n件衣服
        for(int i=1;i<=n;i++)
            cin>>a[i];
        for(int i=1;i<=n;i++)
            for(int j=i;j<=n;j++)
            dp[i][j]=j-i+1;
        for(int i=n-1;i>=1;i--)
        {
            for(int j=i+1;j<=n;j++)
            {
                dp[i][j]=dp[i+1][j]+1;
                for(int k=i+1;k<=j;k++)
                {
                    if(a[i]==a[k])
                        dp[i][j]=min(dp[i][j],dp[i][k-1]+dp[k+1][j]);//注意这个的第k天的衣服被省略掉了,因为第k天的衣服和第i天一样
                }
            }
        }
        cout<<"Case "<<++kase<<": ";
        cout<<dp[1][n]<<endl;
    }
    return 0;
}

补充:51nod 1021

题意:
N堆石子摆成一条线。现要将石子有次序地合并成一堆。规定每次只能选相邻的2堆石子合并成新的一堆,并将新的一堆石子数记为该次合并的代价。计算将N堆石子合并成一堆的最小代价。

例如: 1 2 3 4,有不少合并方法
1 2 3 4 => 3 3 4(3) => 6 4(9) => 10(19)
1 2 3 4 => 1 5 4(5) => 1 9(14) => 10(24)
1 2 3 4 => 1 2 7(7) => 3 7(10) => 10(20)

括号里面为总代价可以看出,第一种方法的代价最低,现在给出n堆石子的数量,计算最小合并代价。
Input
第1行:N(2 <= N <= 100)
第2 - N + 1:N堆石子的数量(1 <= Aii <= 10000)
Output
输出最小合并代价

代码:

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <cstring>
#include <string>
#include <algorithm>
#include <set>
#include <map>
#include <stack>
#include <vector>
#include <queue>
#define ri(n) scanf("%d",&n)
#define oi(n) printf("%d\n",n)
#define rl(n) scanf("%lld",&n)
#define ol(n) printf("%lld\n",n)
#define rep(i,l,r) for(i=l;i<=r;i++)
#define rep1(i,l,r) for(i=l;i<r;i++)
using namespace std;
typedef long long ll;
const int inf=0x3f3f3f3f;
const int maxn=50000+500;
const int epg=10-8;
int a[100+10],sum[100+10];
int dp[100+10][100+10];
int main()
{
    int n;
    scanf("%d",&n);
    for(int i=1;i<=n;i++)
        scanf("%d",&a[i]);
    for(int i=1;i<=n;i++)
        sum[i]=sum[i-1]+a[i];
    memset(dp,inf,sizeof(dp));
    for(int i=1;i<=n;i++)
        dp[i][i]=0;
    for(int len=1;len<=n;len++)
    {
        for(int i=1;i+len-1<=n;i++)
        {
            int j=i+len-1;
            for(int k=i;k<j;k++)
                dp[i][j]=min(dp[i][j],dp[i][k]+dp[k+1][j]+sum[j]-sum[i-1]);
        }
    }
    printf("%d\n",dp[1][n]);
    return 0;
}
1
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:8899次
    • 积分:761
    • 等级:
    • 排名:千里之外
    • 原创:68篇
    • 转载:2篇
    • 译文:0篇
    • 评论:3条